
3467

IntroductIon

Pig and poultry production uses crossbreeding of 
pure lines or breeds to produce production animals. 
This enables us 1) to capitalize on heterosis, the phe-
nomenon that crossbreds outperform the average of 
the purebred parents; 2) to benefit from breed com-
plementarity (Sellier, 1976), e.g., to cross lines spe-
cialized for different traits (Smith, 1964); and 3) to 
be flexible in creating different products for different 
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AbstrAct: Pig and poultry production relies on 
crossbreeding of purebred populations to produce 
production animals. In those breeding schemes, selec-
tion takes place within the purebred population to 
improve crossbred performance (CB performance). 
The genetic correlation between purebred perfor-
mance (PB performance) and CB performance (rpc) 
is, however, lower than unity for many traits. When 
rpc is low, the use of CB performance in selection 
is required to achieve sizable genetic progress. The 
objectives of this paper were to describe the differ-
ent components and importance of rpc, and to review 
existing literature that report rpc estimates in pigs. The 
rpc has 3 components: 1) genotype by genotype inter-
actions, 2) genotype by environment interactions, and 
3) differences in trait measurements. We theoretical-
ly showed that direct selection for CB performance 
reduces the response to selection in purebreds for 

PB performance by a factor 1
2rPC

, when achieving 

the same crossbred response as obtained with indi-
rect selection based on PB performance. This implies 

that direct selection for CB performance leads to less 
extreme PB performances and thus potentially easier 
management in the nucleus, especially for traits with 
low rpc. In the review, 201 rpc estimates from 27 stud-
ies were considered, published between 1964 and 
2017. The average rpc estimate was 0.63, with 50% 
of the estimates between 0.45 and 0.87. Standard 
errors of the estimates were on average 0.16, with 
50% of the standard errors between 0.06 and 0.19. 
For all different trait categories, e.g., Growth, Meat 
amount, Meat quality, Feed, and Fertility, the aver-
age rpc was around 0.6. Genotype by environment 
interactions appeared to have a smaller contribu-
tion to rpc than genotype by genotype interactions. 
More research regarding the impact of the different 
components on the rpc can help to improve breed-
ing programs. Future studies are advised to report 
characteristics of the herd environments in detail, to 
report estimated h2 and additive genetic variances 
for purebreds and crossbreds, to report the estimated 
rpc with standard errors or confidence intervals, to 
estimate separate rpc for different pure lines, and to 
genotype the animals under study.
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markets, by changing line composition of the crossbred 
animals (Dickerson, 1973).

The breeding goal of those systems is to improve 
crossbred performance, while selection commonly takes 
place in purebred animals based on purebred perfor-
mance. Thus, selection is indirect, and the accuracy of 
selection depends on the genetic correlation between 
purebred (Pb) and crossbred (cb) performance (rpc). 
This selection approach may be suboptimal, depending 
on the magnitude of rpc (Bijma and van Arendonk, 1998). 
An rpc lower than 0.8 may indicate an advantage of com-
bined purebred and crossbred selection over purebred 
selection (Wei and Van der Werf, 1994; van Grevenhof 
and van der Werf, 2015). More generally, genetic cor-
relations lower than 0.8 may suggest agriculturally and 
biologically relevant differences (Robertson, 1959), pos-
sibly warranting a specific breeding program for each en-
vironment, instead of having one joint breeding program 
across those environments (Mulder et al., 2006). A gener-
al belief that the rpc often may be (considerably) smaller 
than unity has motivated the development of combined 
purebred and crossbred selection (ccPs) strategies that 
jointly consider purebred and crossbred information (Wei 
and Van der Werf, 1994) and can increase the response to 
selection (Ibáñez-Escriche et al., 2011).

The first objective of this paper is to describe the 
different components and importance of rpc. The rpc is 
mainly relevant in pigs and chickens. As a second objec-
tive of this paper, we focus on reviewing existing litera-
ture that report estimates of the rpc in pigs.

tHeoretIcAl bAcKGround

This paper is organized as follows. We start with 
some theoretical background of rpc; what are the com-
ponents of rpc and what is the importance of rpc in se-
lection schemes? This theory is followed by an overall 
description and classification of the existing literature 
reporting rpc values in pigs, thereby summarizing and 
discussing rpc estimates per trait category or investigat-
ing the effect of each of the different components of rpc. 
Finally, we give recommendations and guidelines for 
future studies estimating and reporting rpc values.

As explained before, the rpc is the genetic correla-
tion between PB and CB performance, which can be 
regarded as 2 different traits. The genetic correlation is 
generally defined as the correlation between breeding 
values for 2 traits of the same individuals (Bohren et 
al., 1966; Falconer and Mackay, 1996). The concept of 
breeding values is based on allele substitution effects of 
the causal variants. It can theoretically be shown that 
the genetic correlation between 2 traits is equal to the 
correlation between allele substitution effects of the 
causal variants for those traits (Wientjes et al., 2017). 

The genetic correlation can also be interpreted in terms 
of variance explained, where the genetic correlation 
represents the square root of the proportion of genetic 
variance in 1 trait that could be explained by the genetic 
variation in the other trait. Altogether, it indicates that a 
high rpc means that PB and CB performance are highly 
likely influenced by the same causal variants with the 
same effects and a low rpc means that PB and CB per-
formance are influenced by different causal variants 
and/or that the causal variants have different effects.

Components of the rpc

The rpc is a combination of 3 main components, each 
of the components can reduce the rpc. The first compo-
nent is due to genotype by genotype interactions (GxG) 
as a result of differences in genetic background of pure-
bred versus crossbred animals. Allele frequencies at 
causal variants in purebreds are likely to differ from al-
lele frequencies in crossbreds. Those differences in allele 
frequencies can result in differences in allele substitution 
effects of causal variants under dominant gene action 
(Fisher, 1918; Fisher, 1930; Falconer and Mackay, 1996). 
Moreover, due to epistatic interactions, the allele substi-
tution effect of 1 locus can differ when the allele frequen-
cies at another locus, with which the first locus interacts, 
are different (Fisher, 1918; Fisher, 1930). Therefore, dif-
ferences in allele frequencies between populations can 
result in differences in effects of causal variants in pure-
bred versus crossbred animals (Wei et al., 1991b), espe-
cially for traits with large dominance variation (Wei et al., 
1991b; Wei and van der Werf, 1995), thereby resulting in 
an rpc below 1.

Second, deviations of the rpc from 1 can be due to 
genotype by environment interactions (GxE), indicat-
ing that the effects of the causal variants depend on the 
environment in which the animal is housed. GxE can 
have 2 different components: 1) heterogeneity of genetic 
variance in different environments, and 2) differences in 
ranking of individuals based on their breeding values in 
different environments. Effectively, only the effect lead-
ing to re-ranking of individuals based on their breeding 
value for PB versus CB performance affects the rpc. For 
the rpc, the contrasting environments are the nucleus ver-
sus the commercial herd environment. Nucleus environ-
ments tend to have high biosecurity levels, resulting in 
the absence or low presence of pathogens, while group 
size tends to be small and feeding is often ad libitum 
or semirestricted (Rothschild and Ruvinsky, 2011). In 
commercial environments, biosecurity levels are typi-
cally less strict, herd environment may be more vari-
able, group size tends to be larger, and restricted feeding 
is more commonly applied (Rothschild and Ruvinsky, 
2011). Moreover, on-farm cooling systems might be bet-
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ter in the nucleus environment, resulting in a larger effect 
of heat stress in crossbred animals on commercial farms 
(Fragomeni et al., 2016). Therefore, the genes affecting 
traits like disease tolerance and response to heat stress 
may have a larger effect on performance in the com-
mercial compared to the nucleus environment (Dekkers, 
2007). Thus, the set of causal variants and their effects 
related to performance can differ for purebreds housed in 
nucleus environments compared to crossbreds housed in 
commercial environments.

Third, either the definition or the measurement of 
the trait may differ between purebred and crossbred ani-
mals, causing the rpc to be smaller than 1. An example 
of a trait for which different measurement methods are 
used is backfat thickness, which can either be measured 
using ultrasound on live animals, or directly from the 
carcass after slaughtering the animals (Standal, 1977; 
Zumbach et al., 2007). Because purebred animals are 
measured to support selection decisions for the breeding 
program, backfat is generally measured using ultrasound 
on live animals, in contrast to crossbred animals, which 
are generally measured after slaughtering (Zumbach et 
al., 2007). The correlations between ultrasound and car-
cass measurements of the same animals are reported to 
be around 0.85 (Giles et al., 1981; Lo et al., 1992). This 
indicates that even though the correlation between both 
measurements is high, the rpc for backfat is affected by 
measuring purebreds and crossbreds in different ways.

The Importance of rpc

Here, we will give a brief review of quantitative 
genetics theory relevant to explain the importance of 
the rpc. Naturally, this will provide a list of parameters 
that are important when measuring and interpreting 
the rpc.

The response to selection per unit of time is com-

puted using the breeder’s equation: R i
L

a=
× ×ρ σ

, 

where i is the intensity of selection, ρ is the accuracy 
of selection, σa is the genetic standard deviation of the 
trait under selection, and L is the generation interval. 
In many breeding programs where the breeding goal 
is to improve CB performance on commercial farms, 
actual selection takes place based on PB performance 
in nucleus herds. In this case, indirect selection is ap-
plied based on a correlated response (Falconer and 
Mackay, 1996). Alternatively, the purebreds can be 
directly selected for CB performance, based on the 
performance records of their crossbred relatives. A 
combination of both selection methods is possible 
as well, but for simplicity, here we either consider 
the response to direct selection or indirect selection.

When purebreds are selected based on PB per-
formance, the direct response to selection (R(PB)) in 
purebreds is for PB performance:

( ) ,, PB PBPB PB a
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i
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L
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where 
,PB PBas  represents the genetic standard deviation 

in purebreds for PB performance, and PB,PB is the 
accuracy of selecting purebreds for PB performance. 
This selection method results in a correlated response 
to selection in the purebreds for CB performance, 
which is equal to
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where 
,PB CBas  is the genetic standard deviation in pure-

breds for CB performance.
When purebreds are selected based only on CB 

performance, the direct response to selection (R(CB)) 
in purebreds for CB performance is

( ) ,, PB CBPB CB a
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i
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where PB,CB is the accuracy of selecting purebreds 
for CB performance. The correlated response to this 
selection in the purebreds for PB performance is
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The purebred animals only contribute half of their 
genes to the crossbred offspring. Therefore, the re-
sponse to selection in CB performance of the cross-
breds due to genetic progress for CB performance 
in one specific purebred parent line is only half the 
response in the purebreds, assuming that the genetic 
standard deviations for CB performance are the same 
in purebreds and crossbreds.

The previous equations indicate that to obtain the 
same response to selection in crossbreds for CB per-
formance using both selection strategies, the ratio in 
response to selection for PB performance is

( ) ( )CB CB
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So, to obtain the same response in CB performance, 
the response to selection in purebreds for PB perfor-
mance should be 2

1

pcr
 as large when selection is based 

on PB performance compared to selection based on CB 
performance. Conversely, direct selection for CB per-
formance reduces the response to selection in purebreds 
for PB performance by a factor 2

1

pcr , when achieving the 
same CB response as obtained with indirect selection 
based on PB performance. This implies that direct se-
lection for CB performance leads to less extreme PB 
performances and thus potentially easier management 
in the nucleus, especially for traits with low rpc.

Regardless whether PB or CB performance is used 
as information source, the parameter i still reflects the 
intensity of selection of purebred animals, and 

,PB PBas  
and 

,PB CBas  still reflect the genetic standard deviation 
for either PB or CB performance in purebred ani-
mals. The generation interval, L, can be slightly longer 
when selecting purebreds for crossbred performance 
because it might take more time to estimate accurate 
breeding values. However, for simplicity, we will as-
sume that this difference is reflected in the accuracy of 
breeding values and that the generation interval is the 
same. Therefore, when comparing different breeding 
programs using either PB or CB performance as infor-
mation source, we assume that i, 

,PB PBas , 
,PB CBas , and L 

are constant.
So, the only parameter that likely differs when se-

lecting animals based on PB or CB performance is the 
accuracy of selection. In practical breeding programs, 
the accuracy of selecting purebred animals for CB per-
formance is expected to be lower than the accuracy 
of selecting for PB performance. This is mainly a re-
sult of the level of relationships between the selection 
candidates and the animals with performance records. 
Breeding values for PB performance may be based on 
performance records of the PB selection candidate it-
self, its parents, full- and half-sibs, and progeny. Breed-
ing values for CB performance may be based on per-
formance records of half-sibs, progeny, or even more 
distant descendants of the PB selection candidate, but 
no own performance, parent, or full-sib information 
can be used. This substantially reduces the relation-
ships between the animals with performance records 
and the selection candidates, which reduces the accu-
racy for both traditional (Mrode and Thompson, 2005) 
and genomic selection (Habier et al., 2007a). More-
over, the accuracy of selection for PB and CB perfor-
mance depends on the heritability, which can be dif-
ferent for PB ( 2

PBh ) and CB ( 2
CBh ) performance. When 

the heritability for CB performance is lower than for 
PB performance, this can further reduce the accuracy 
of selecting for CB performance for both traditional 
(Mrode and Thompson, 2005) and genomic selection 

(Meuwissen et al., 2001; Daetwyler et al., 2008). The 
above formulas, however, show that selecting based 
on CB performance is already beneficial when the ac-
curacy of selecting for CB performance in purebred 
animals (PB,CB) is at least rpc × PB,PB. So, when rpc 
is 0.5, selection based on CB performance is already 
beneficial when its accuracy is at least half the accu-
racy of selection for PB performance.

Before, it was shown that a difference in accuracy 
of selection is the only reason why response to selec-
tion for CB performance can be different when select-
ing purebred animals based on either PB performance 
or CB performance. The accuracy of selection is both 
depending on the level of relationships between selec-
tion candidates and animals with performance records 
as well as on the heritability. Therefore, next to the rpc, 
the values of 2

PBh  and 2
CBh  are also important when 

comparing the expected benefits of selection based on 
PB versus CB performance. In addition, 

,PB PBas  and 
,PB CBas  can be used to estimate the response to selec-

tion in crossbreds when knowing the response to se-
lection in purebreds, and should be reported as well.

Review of Existing Literature

In this review, 201 estimates of rpc in pigs from 27 
studies were considered. The studies were published 
between 1964 and 2017 (Fig. 1), and an extensive 
overview of the reviewed papers is given in Table 
S1. In this section, we will start by giving an over-
view of the different methods and models to compute 
rpc, followed by the empirical values for different trait 
categories and the relation of rpc to the heritability. 
Thereafter, we discuss the contributions of each of the 
3 components to the rpc.

Methods and Models to Compute rpc

In the majority of the studies, the experimental set-
up involves a limited number of sires with both PB and 
CB offspring, whose performance is measured. Over 
time, methods used to compute the rpc have changed. 
The earliest studies typically computed the correlation 
between the average PB and CB offspring performance. 
From the late 1990s onward, all studies used animal 
models. The use of animal models to estimate rpc has 
been boosted by the development of restricted maxi-
mum likelihood (reMl; Patterson and Thompson, 
1971) and Gibbs sampling (Wang et al., 1993), and the 
implementation thereof in software packages (Misz-
tal, 1994). In addition, computers became increasingly 
more powerful, which made solving of the computa-
tionally more complex animal models possible.
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Animal models traditionally rely on the use of 
pedigree relationships. In those models, it is essential 
to have close family relationships between the pure-
bred and crossbred animals of which performance re-
cords are available. It has been shown that in those 
models the standard error of the estimated rpc depends 
on the number of common sires between the purebred 
and crossbred animals, the value of the rpc, and the 
reliabilities of sire estimated breeding values reflect-
ing the number of offspring with performance records 
(Bijma and Bastiaansen, 2014). In total, 11 studies re-
ported the number of common sires between purebred 

and crossbred animals as well as the standard error of 
the rpc estimate. Across those studies, it was indeed 
shown that a higher number of common sires resulted 
in lower standard errors (Fig. 2).

Recently, estimation of both breeding values and 
variance component is increasingly more often based 
on genomic instead of pedigree relationships. An im-
portant benefit of the use of genomic relationships, in 
the context of estimation of the rpc, is that informa-
tion of crossbred animals without pedigree informa-
tion can be used. In addition, because genomic rela-
tionships are more precise than pedigree relationships, 

Figure 1. Distribution of the number of studies and rpc estimates over the years used in the review. In this review, the following studies were included: 
Robinson et al. (1964), Wong et al. (1971), Standal (1977), McLaren et al. (1985), Brandt and Täubert (1998), Merks and Hanenberg (1998), Bösch et 
al. (2000), Täubert and Brandt (2000), Lutaaya et al. (2001), Nakavisut et al. (2005), Habier et al. (2007b), Stamer et al. (2007), Zumbach et al. (2007), 
Cecchinato et al. (2010), Ibáñez-Escriche et al. (2011), Nagyné Kiszlinger et al. (2011), Bloemhof et al. (2012), Nagyné Kiszlinger et al. (2012), Nagyné 
Kiszlinger et al. (2013), Hidalgo et al. (2015a), Hidalgo et al. (2015b), Abell et al. (2016), Nielsen et al. (2016), Tusell et al. (2016), Xiang et al. (2016a), 
Xiang et al. (2016b), and R. M. Godinho, Animal Breeding and Genomics, Wageningen University and Research, Wageningen, personal communication.

Figure 2. Number of common sires between purebred and crossbred animals versus the standard error of the rpc.
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their use is expected to lead to a smaller standard error 
of the rpc (Xiang et al., 2016a; Xiang et al., 2016b).

Empirical Values

Estimated rpc values were reported for 39 differ-
ent traits, covering a wide range of traits measured in 
pig production. We divided the traits into 6 trait cat-
egories, namely: Growth, Meat amount, Meat quality, 
Fertility, Feed, and Index (Table 1). For 4 out of the 
6 trait categories (Growth, Meat amount, Meat qual-
ity, and Fertility), a considerable number (> 20) of rpc 
estimates were obtained. For the other 2 trait catego-
ries, Feed and Index, only 9 and 3 rpc estimates were 
obtained. Over all traits, estimates of rpc covered the 
whole range of possible correlation estimates (1 to 
1), with even some estimates outside this range. The 
average rpc estimate was 0.63, with 50% of the esti-
mates between 0.45 and 0.87. Standard errors of the 
estimates were reasonably high, ranging from 0.002 to 
0.58 with an average standard error of 0.16, with 50% 
of the estimated standard errors between 0.06 and 0.19.

Traits

The estimates of the rpc for the different trait cat-
egories are highly variable (Fig. 3). This indicates that 
either the rpc estimates are highly variable across traits 
in 1 trait category and/or across different purebred-
crossbred combinations or that accurately estimating 
the rpc is difficult. This figure, however, clearly shows 
that for all 6 trait categories the true rpc is likely dif-
ferent from 1. Average rpc estimates are slightly above 
0.6 for Growth, Meat amount, Meat quality, and Feed, 
and slightly below 0.6 for Fertility and Index (Table 1). 
For all traits, the average rpc was below 0.8, suggest-
ing that it is important to use a combined crossbred 

and purebred selection scheme (ccPs) for all traits 
(Wei and Van der Werf, 1994).

The range of estimates is smaller for Feed and In-
dex traits, which is probably due to the low number of 
estimates. The 4 trait categories with a considerable 
amount of information show more or less the same 
range in rpc estimates, although the average rpc is 
slightly lower for Fertility than for the production traits 
(Growth, Meat Amount, and Meat Quality). Three out 
of the 4 studies estimating rpc for fertility traits and 
production traits in the same animals also showed 
lower rpc estimates for fertility traits (Robinson et al., 
1964; Wong et al., 1971; McLaren et al., 1985; Naka-
visut et al., 2005). It has been suggested that nonad-
ditive effects, like epistasis and dominance, are more 
important for traits with a low heritability, like fertility, 
than for traits with a high heritability, like production 
traits (Sellier, 1976; Nakavisut et al., 2005). This is in 
agreement with the larger dominance variance relative 
to the additive variance for fertility traits compared to 
production traits reported in purebred Yorkshire pigs 
(Culbertson et al., 1998). As explained before, nonad-
ditive effects in combination with differences in allele 
frequency between the parental populations can result 
in an rpc below 1. From the small and nonsignificant 
differences between the trait categories in our review 
study, however, no final conclusion can be drawn 
about the difference in rpc across traits.

Heritability Estimates

Besides rpc estimates, most studies also reported h2 
estimates for PB and CB performance. Generally, traits 
with a higher h2 for PB performance also had a higher 
h2 for CB performance (Fig. 4). The average h2 for PB 
and CB performance was similar. Wei et al. (1991a) 
theoretically showed that for traits with dominant gene 

table 1. Overview of the 6 different trait categories

Trait category Traits (Number of rpc estimates per trait)
Total number of rpc 

estimates Avg. h2 PB Avg. h2 CB Avg. rpc
Growth Average daily gain (28), Body weight (13), Age at test weight (2) 43 0.32 0.31 0.66
Meat amount B ackfat (30), Lean meat content (16), Muscle depth (3), Carcass 

length (2), Meat content (2), Muscle area (2), Meat:Fat content (2), 
Ham content (2), Body length (1), Belly meat content (1), Lipid 
deposition (1), Protein deposition (1)

63 0.41 0.42 0.69

Meat quality p H meat (11), Conductivity (5), Meat clarity (2), Meat quality score 
(1), Drip loss (1), Intramuscular fat (1)

21 0.34 0.28 0.67

Fertility T otal number born (21), Total number born alive (16), Number of 
piglets raised (4), Gestation length (4), Farrowing rate (4), Age 
at first insemination (3), Birth weight (2), Heat tolerance (2), 
Farrowing interval (2), Litter birth weight (2), Litter variation (1), 
Longevity (1)

62 0.15 0.18 0.54

Feed F eed conversion ratio (4), Feed efficiency (2), Feed intake (1), 
Residual energy intake (1) Residual feed intake (1)

9 0.20 0.27 0.67

Index Index (3) 3 0.40 0.43 0.50
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action, the additive genetic variance is expected to be 
higher in crossbreds compared to purebreds. The ex-
pected difference in additive genetic variance depends 
on the difference in allele frequency between both par-
ent populations and the level of dominance for the trait. 
For instance, when the dominance effect is half the ad-
ditive effect, the additive genetic variance in crossbreds 
can be up to 50% larger than the average additive ge-
netic variances in both purebred parent populations. 
Although in a number of studies additive genetic vari-
ances were indeed greater for crossbreds compared to 
purebreds (e.g., Brandt and Täubert, 1998; Cecchinato 
et al., 2010; Bloemhof et al., 2012; Tusell et al., 2016), 
there was no general trend across the studies that con-

firmed this expectation. So, the similar average h2 es-
timates for PB and CB performance indicate that either 
the studied traits are not largely affected by dominance, 
or that environmental variance is greater in crossbreds 
as well. Because rpc estimates are different from 1, it is 
likely that dominance effects are present. Therefore, it is 
more likely that the environmental variance is greater in 
crossbreds, which is indeed confirmed by several studies 
(Täubert and Brandt, 2000; Habier et al., 2007b; Zum-
bach et al., 2007; Bloemhof et al., 2012), although no 
general trend is observed across all studies. This larger 
environmental variance for crossbreds might be a result 
of a scale effect (Habier et al., 2007b), because cross-
breds tend to outperform their purebred parents, or might 

Figure 3. Estimated rpc values for the 6 different trait categories.

Figure 4. Heritability in crossbreds versus heritability in purebreds. Different colors represent the different trait categories (red = Growth; orange = 
Meat amount; yellow = Meat quality; light green = Fertility; green = Feed; blue = Index).
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be a result of the less controlled and therefore more vari-
able commercial conditions under which crossbreds are 
generally kept (Wei and van der Werf, 1995).

Brandt and Täubert (1998) suggested a relation 
between rpc and h2 of a trait, with higher rpc values 
for traits with a higher h2. This is in agreement with 
the suggestion that nonadditive effects, which reduce 
rpc, may be more important for traits with a low heri-
tability (Sellier, 1976; Nakavisut et al., 2005). We in-
vestigated this suggested relationship across all 26 re-
viewed studies that reported both rpc and h2 estimates. 
As indicated before, the rpc is the square root of the 
proportion of genetic variance in one trait that could 
be explained by the genetic variance in the other trait. 
The h2 of a trait is the proportion of the total variation 
that could be explained by genetics. To get rpc and h2 
on comparable scales, rpc estimates were related to the 

square root of the h2 values. Both the square root of 
the h2 for PB performance (Fig. 5) as well as the h2 for 
CB performance (Fig. 6) seem to be unrelated to the 
rpc value (R2 = 0.0136 and R2 = 0.0023, respectively). 
So, across all studies, there is no evidence for the sug-
gested relationship between rpc and h2.

Estimates of rpc and the 3 Components of rpc

As indicated before, the rpc consists of 3 main com-
ponents: 1) genotype by genotype interactions, 2) gen-
otype by environment interactions, and 3) differences 
in methods to measure the traits. Here, we will try to 
disentangle the 3 components. In total, 92 rpc estimates 
from 11 studies are between purebreds and crossbreds 
in the same environment and using the same method 
to measure the trait. Those estimates reflect the rpc due 

Figure 6. Estimated rpc versus the square root of the heritability in crossbreds. Different colors represent the different trait categories (red = Growth; 
orange = Meat amount; yellow = Meat quality; light green = Fertility; green = Feed; blue = Index).

Figure 5. Estimated rpc versus the square root of the heritability in purebreds. Different colors represent the different trait categories (red = Growth; 
orange = Meat amount; yellow = Meat quality; light green = Fertility; green = Feed; blue = Index).



Purebred-crossbred correlation in pigs 3475

to genotype by genotype interactions. Moreover, 78 
rpc estimates from 16 studies are between purebreds 
and crossbreds in different environments and using the 
same methods to measure the trait. Those estimates re-
flect the rpc due to both genotype by genotype interac-
tions and genotype by environment interactions. Finally, 
19 rpc estimates from 3 studies are between purebreds 
and crossbreds in different environments and using dif-
ferent methods of measuring the trait. Those rpc esti-
mates reflect the rpc due to all 3 components.

In Fig. 7, the rpc estimates for the first 2 classes, 
either including or excluding differences in environ-
ments, are shown. Unfortunately, the number of stud-
ies and observations using different methods to mea-
sure the trait is too low to investigate the effect of 
this component; therefore, this class is not included. 
Figure 7 shows that the range of estimates is wide for 
both classes. The average rpc estimate of 0.66 between 
purebreds and crossbreds in the same environment in-
dicates that genotype by genotype interactions have a 
large effect on the rpc. Including genotype by environ-
ment interactions resulted in a slightly lower average 
rpc of 0.61, which shows that there is a small effect 
of genotype by environment interactions. This minor 
decrease in rpc suggests that the effect of genotype by 
environment interactions is smaller than the effect of 
genotype by genotype interactions.

Recommendations and Guidelines

As explained in the theory section, the value for 
rpc as well as the heritabilities for PB and CB perfor-
mance are required for the optimization of breeding 
programs for CB performance. An accurate estimation 
of rpc is difficult and requires a substantial amount of 
data (Robertson, 1959; Bijma and Bastiaansen, 2014). 
Therefore, we recommend studies investigating rpc to 
report both h2 values and rpc estimates with standard 
errors or confidence intervals. The additive genetic 
variances for both PB and CB performance, together 

with the rpc, can be used to estimate the response to 
selection in crossbreds when knowing the response to 
selection in purebreds. Therefore, we recommend to 
report additive genetic variances for PB and CB per-
formance as well.

For comparing rpc estimates of different studies, 
it is important to clearly describe the environments in 
which purebred and crossbred animals were kept, even 
when both groups were kept in the same environment. 
It is for example relevant to know whether the same 
biosecurity level and feeding regimes were applied, or 
whether group size was the same. For instance, feeding 
animals ad libitum or not might affect the results, yet 
only 2 studies included in this review reported that in-
formation (Zumbach et al., 2007; R. M. Godinho, Ani-
mal Breeding and Genomics, Wageningen University 
and Research, Wageningen, personal communication).

The rpc may have different values for each com-
bination of purebred parental line and crossbred. In a 
number of studies, however, 1 rpc was estimated be-
tween 2 or more parental purebred lines and 1 or more 
types of crossbreds. In traditional pedigree BLUP 
models, relationships between the parental lines are 
all zero; therefore, the value of the genetic correla-
tion between the lines is not relevant. In contrast, in 
GBLUP models, relationships between the lines vary 
around 0. Therefore, modeling performance of differ-
ent parental lines as the same trait in GBLUP assumes 
a genetic correlation of 1 between both purebred pa-
rental lines. This assumption is very unrealistic given 
the differences in genetic background between lines 
in combination with nonadditive effects (Fisher, 1918; 
Falconer and Mackay, 1996), as has been shown by 
estimated genetic correlations between different cattle 
breeds ranging from 0.01 to 0.79 (e.g., Karoui et al., 
2012; Zhou et al., 2014). Furthermore, the 10 studies 
that estimated rpc separately for each purebred-cross-
bred combination showed absolute differences in rpc 
between the purebred lines ranging from 0.01 to 0.86, 
with an average of 0.23. This confirms our expectation 
that rpc values are likely to differ across combinations 
of purebred lines and crossbreds. Moreover, we expect 
the rpc to be lower between a purebred dam line and 
its 3-way cross offspring compared to its 2-way cross 
offspring, because the genetic background is more 
different. Unfortunately, the data were too limited to 
investigate this expectation in the reviewed studies. 
Altogether, we strongly recommend estimating and 
presenting separate rpc values for each unique pure-
bred-crossbred combination.

Genomic relationships instead of pedigree rela-
tionships are increasingly more often used in estima-
tion of both breeding values and variance components. 
Generally, genomic relationships are more precise than 

Figure 7. Estimated rpc values for studies housing purebreds and 
crossbreds in the same or different environments.
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pedigree relationships, because they capture variation 
between relatives due to Mendelian sampling and take 
relationships between founder individuals in the pedi-
gree into account (Nejati-Javaremi et al., 1997; Hill 
and Weir, 2011). Particularly for distant relationships, 
genomic relationships are more precise (Hill and Weir, 
2011), due to the build-up of Mendelian sampling 
over generations. The commercial crossbred animals 
are generally distantly related to the purebred selec-
tion candidates, stressing the benefit of using genom-
ic information for purebred and crossbred analyses. 
Moreover, by using genomic information, crossbred 
animals without pedigree information can be included, 
which increases the amount of information that can be 
used. It is indeed shown that genomic information re-
duces the standard error of estimating rpc (Xiang et 
al., 2016a,b). Therefore, we strongly recommend that 
future studies estimating rpc use genomic information.

The rpc can be different from 1 due to 3 different 
components. To predict the genetic progress in cross-
breds due to selection in purebred animals, the value 
of rpc is important, regardless of the impact of each 
of the 3 different components on this rpc value. For 
optimizing breeding programs, however, it is useful 
to know whether the rpc is different from unity due to 
differences in genetic backgrounds, environments, or 
trait measurements. When the rpc is mainly influenced 
by differences in genetic background, measuring 
crossbred animals, either in commercial or nucleus 
environments, is essential. However, when the rpc is 
mainly influenced by differences in the environment 
of purebred versus crossbred animals, genetic progress 
could be increased by measuring purebred animals in 
commercial environments. For example, full-sibs of 
the selection candidates could be measured in a com-
mercial environment, which increases the relation-
ships between selection candidates and performance 
records and can increase the response to selection.

Based on the reviewed studies, it appears that the 
effect of differences in genetic background on rpc is 
larger than of differences in environment. Unfortunate-
ly, it was not possible to investigate the effect of dif-
ferences in trait measurements due to the low amount 
of data. The high correlations (~0.85) between ultra-
sound and carcass measurements on the same animals 
(Giles et al., 1981; Lo et al., 1992), however, suggest 
that differences in trait measurements have a relatively 
small contribution to rpc. For a more conclusive dis-
section of the components of the rpc, more research is 
needed. The ideal experiment involves a design where 
purebreds and crossbreds are kept under both nucleus 
and commercial conditions and data are collected on 
all animals using the method generally used in pure-
breds and the method generally used in crossbreds (Fig. 

8). In Fig. 8, the gray boxes represent the data that are 
generally collected (purebreds in nucleus environment 
and crossbreds in commercial environment). Collect-
ing data in all 4 boxes using the 2 methods of data col-
lection enables the estimation of genotype by genotype 
interactions (rG×G), genotype by environment interac-
tions (rG×E), correlation due to trait measurement (rT), 
and the purebred-crossbred correlation (rpc). We rec-
ommend at least measuring animals in 1 of the boxes 
using the 2 different methods to investigate rT. When it 
is only possible to collect data from 3 different boxes, 
we recommend collecting data from purebreds in com-
mercial environments (white box) as well as purebreds 
in nucleus and crossbreds in commercial environments 
(gray boxes), which still enables us to disentangle the 
different components from the rpc. This is because col-
lecting data of purebreds under commercial conditions 
can be beneficial for the breeding program when the 
rpc is mainly a result of genotype by environment in-
teractions, as explained before.

Genotype by environment interactions might not 
only play a role between nucleus and commercial farms, 
but also among purebred farms and among crossbred 
farms. Due to differences in management and hous-
ing conditions, the nucleus environment is not exactly 
the same for all purebred animals and the commercial 
environment is not exactly the same for all crossbred 
animals. The extent of genotype by environment inter-
action among nucleus or commercial herds is, however, 
not known. This can complicate the estimation of rpc 
when information from multiple purebred and cross-
bred farms are combined. Investigating the underlying 
nature of the rpc is probably easiest by focusing on 1 
purebred and 1 crossbred farm. For estimating the rpc 
relevant for a breeding program, however, we recom-

Figure 8. Experimental design to disentangle the effect of the differ-
ent components on rpc. Currently, data are collected only in the gray boxes 
using 1 method to measure the trait. The arrows within the boxes indicate 
the correlation due to trait measurements (rT) when measurements are done 
using 2 different methods. The different arrows between the boxes indicate 
genotype by genotype interactions (rG×G), genotype by environment inter-
actions (rG×E), and the total purebred-crossbred correlation (rpc).
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mend combining information from a group of purebred 
farms and a group of crossbred farms.

Conclusion

The genetic correlation between purebreds and 
crossbreds, rpc, is an important component in pig 
and poultry breeding. This rpc can be different from 
1 due to 3 components: 1) genotype by genotype in-
teractions, 2) genotype by environment interactions, 
and 3) differences in trait measurements. In this pa-
per, we theoretically showed that direct selection for 
CB performance reduces the response to selection in 
purebreds for PB performance by a factor 2

1

PCr
, when 

achieving the same crossbred response as obtained 
with indirect selection based on PB performance. This 
implies that direct selection for CB performance leads 
to less extreme PB performances and thus potentially 
easier management in the nucleus, especially for traits 
with low rpc. The review of rpc in pigs showed that 
rpc is around 0.6 for all trait categories, e.g., Growth, 
Meat amount, Meat quality, Feed, and Fertility. Geno-
type by environment interactions appeared to have a 
smaller contribution to rpc than genotype by genotype 
interactions. More research regarding the impact of 
the different components on the rpc can help to im-
prove breeding programs. Future studies are advised 
to report characteristics of the herd environments in 
detail, to report estimated h2 and additive genetic vari-
ances for purebreds and crossbreds and estimated rpc 
with standard errors or confidence intervals, to esti-
mate separate rpc for different pure lines, and to geno-
type the animals under study.
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