

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production

Potential role of the fecal microbiome in breeding for feed efficiency

12 December 2019 | Lisanne Verschuren

Disclaimer

The data (hereinafter: information) that Topigs Norsvin makes available or supplies to you is for informational purposes only. The information has been drawn up by Topigs Norsvin with care but without warranty as to its correctness, its completeness, its suitability or the outcome of its use. Nor does Topigs Norsvin warrant that intellectual property rights of third parties are not infringed by publication of the information. The information is not intended to be a personal advice to you. The information is based on general circumstances and not based on your personal circumstances. It is your own responsibility to check whether the information is suitable for your activities. Use of the information by you is entirely your own responsibility. The outcome of that use will depend on your personal circumstances. To the fullest extent permitted by applicable law Topigs Norsvin rejects any liability to you for losses of any kind (including direct, indirect, consequential, special and punitive damages) resulting from you using the information or from relying on the correctness, the completeness or the suitability of the information.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Microbiota definition

Kerry Evans,. "In a microbial Fog". Labroots. 2015. Image Credit: Cardiff Student Media

"microbiome, to signify the ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space"

Lederberg J, McCray AT. 'Ome Sweet 'Omics-a genealogical treasury of words. The Scientist. 2001;15:8

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Feed efficiency

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

All connected

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

All connected

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production

Results Feed-a-Gene

Topigs Norsvin

Wageningen University & Research

Institute National de la Recherche Agronomique

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Experimental design

~160 pigs

CS ~ 85 % Corn/Soybean meal ~ 10% By products

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Fecal microbiota composition

Microbiota and feed efficiency extremes

Microbiability

The fraction of the phenotypic variance explained by the microbial variance (Difford et al., 2016).

In formula: $m^2 = \sigma_m^2 / (\sigma_m^2 + \sigma_e^2)$

Compare to heritability: $h^2 = \sigma_g^2 / (\sigma_g^2 + \sigma_e^2)$

Microbiability of feed efficiency

Microbiability for traits (corrected for sex, diet and pen):

ADG $m^2 = 0.46 (0.24)$ ADFI $m^2 = 0.42 (0.24)$ FCR $m^2 = 0.81 (0.21)$

When including common litter effect:

ADG $m^2 = 0.30 (0.22)$ ADFI $m^2 = 0.20 (0.18)$

FCR $m^2 = 0.64 (0.21)$

 $c^2 = 0.22 (0.10)$ $c^2 = 0.39 (0.11)$ $c^2 = 0.17 (0.09)$

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Microbiability of nutrient digestibility

	m2 + c2				
Nutrient	m2	SE	c2	SE	
Dry Matter	58.8	19.1	0.0	0.0	
Organic Matter	58.1	18.9	0.0	0.0	
Crude Protein	93.2	10.3	0.0	0.0	
Crude Fat	37.4	23.7	12.3	11.6	
Crude Fibre	65.3	19.1	0.0	0.0	
NSP	66.4	19.8	0.0	0.0	
Ash	1.3	10.0	2.2	9.0	

Color coding:

Evidence for an association with microbiota profile

No evidence for an association with microbiota profile

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production

Results Feed-a-Gene

Institute National de la Recherche Agronomique

Experimental design

- 60 pigs
- 3 breeds: Piétrain, Duroc, Large-White (from 3 different locations)
- 2 diets: low-fiber (LF) and high-fiber (HF)
 - In high-fiber: high diversity of fibers (soluble/insoluble)

'		LF	HF
Chemical composition (%) Ingredients (%)	Corn	34.58	17.77
	Barley	17.77	17.77
	Wheat	17.77	17.77
	Soybean meal	15.74	9.18
	Rapeseed meal	-	1.97
	Wheat bran	2.50	15.00
	Soybean hulls	-	10.00
	Sugar beet pulp	-	5.00
	Nitrogen	2.3	2.3
	Crude fiber	2.8	7.7
	Neutral detergent fiber	10.0	20.0
	Acid detergent fiber	3.4	9.5
	Acid detergent lignin	0.7	1.4
	Gross energy (MJ/kg)	16	16
	Digestible Lysine / Net energy	0.86	0.86

Experimental design

- 60 pigs
- 3 breeds: Piétrain, Duroc, Large-White (from 3 different locations)
- 2 diets: low-fiber (LF) and high-fiber (HF)
 - In high-fiber: high diversity of fibers (soluble/insoluble)

- Final data base:
 - Digestibility data: n = 240
 - Fecal samples for microbiota analyses: n = 229

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results

Diet discrimination

O : High fiber diet

3,9% mean classification error-rate

31 OTUs in 90% of the cross-validation tests \rightarrow « predictors »

More than half of the OTUs are differentially abundant between LF and HF

Diet discrimination

- Whatever the period
- Whatever the previous diet

Le Sciellour et al., 2018

Results

Diet discrimination

Appearance/disappearance

In 3 weeks, the predictors completely adapted to the new diet

 \rightarrow resilience

Mean abundance

3 weeks required to adapt to a new diet (Tilocca et al., 2017)

LE SCIELLOUR M. / Microbiota and digestibility

Results

Correlations microbiota – digestibility coefficients

LE SCIELLOUR M. / Microbiota and digestibility

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

diet effect > genotype

(Carmody et al., 2015)

Results

Breed discrimination

Error rate in sPLS-DA

- Breed discrimination in LF, period 1
- Once the pigs fed a HF diet, the breeds cannot be discriminate

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Experimental design

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results

Results

Great discrimination before and after HS using microbiota information (7% error-rate) At W23 : each sample classified into an enterotype based on microbiota composition

Enterotype 1 vs 2: → Lactobacillus ¬ Turicibacter, Sarcina, Clostridium

	E 1	E 2	RSD ²	
Short-term response (from 23 to 24 wk)				
ADG, g/d	590	600	390	
Change in Skin Temperature, °C	2.20	2.11	0.98	
Change in Rectal Temperature, °C	0.25ª	0.34 ^b	0.45	
Long-term response (from 23 to 26 wk)				
ADG, g/d	579	589	157	
Change in ST, °C	1.86	1.87	0.87	
Change in RT, °C	0.09ª	0.14 ^b	0.43	

Pigs in enterotype 1 \rightarrow more robust to HS

Microbiota in pigs is related to

- Diet fed
- Feed efficiency
- Nutrient digestibility
- Breed
- Heat stress

\rightarrow Microbiota = indicator of environment

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Added value of measuring microbiota?

Currently under investigation

Day before slaughter

WB ~ 50 % Wheat/Barley ~ 45 % By products

- → Currently ~750 pigs under analysis for microbiota, digestibility and metabolites
- \rightarrow Still collecting samples to get a total of ~3000 pigs

Publications

- Verschuren, L. M., Calus, M. P., Jansman, A. J., Bergsma, R., Knol, E. F., Gilbert, H., & Zemb, O. (2018). Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex. *Journal of Animal Science*. 96(4):1405-1418. doi:10.1093/jas/sky060.
- Le Sciellour, M., E. Labussière, O. Zemb, and D. Renaudeau. (2018). Effect of dietary fiber content on nutrient digestibility and fecal microbiota composition in growing-finishing pigs. *PLoS ONE*. 13:e0206159. doi:10.1371/journal.pone.0206159.
- Verschuren, L. M., Schokker, D., Bergsma, R., Jansman, A. J., Molist, F., & Calus, M. P. (2019). Prediction of nutrient digestibility in grower-finisher pigs based on faecal microbiota composition. *Journal of Animal Breeding and Genetics*. doi:10.1111/jbg.12433
- Le Sciellour, M., O. Zemb, I. Hochu, J. Riquet, H. Gilbert, M. Giorgi, Y. Billon, J.-L. Gourdine, and D. Renaudeau. 2019. Effect
 of chronic and acute heat challenges on fecal microbiota composition, production, and thermoregulation traits in growing
 pigs. *Journal of Animal Science*. 97(9):3845-3858. doi:10.1093/jas/skz222.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Thank you for your attention

