

How much have we advanced, current situation, and how far can we go with growth models?

Jaap van Milgen¹, Galyna Dukhta², and Veronika Halas² ¹INRA ²Kaposvár University

Preliminary remark

Outline

Nutritional modeling of growth

- Empirical models of growth
- Concepts used in nutritional models
- From models to tools
- Towards more mechanistic models?
- Future directions

Age (or time) as a driving force for growth

Growth can be described by a Gompertz function

Gonçalves (2017). PhD thesis, UNESP

Growth can be described by a Gompertz function

Potential protein deposition can be described by a Gompertz function

Potential protein deposition can be described by a Gompertz function

Potential protein deposition can be described by a Gompertz function

Schulin-Zeuthen et al. (2008). Anim. Feed Sci. Technol. 143:314-327

Push: the animal eats and thus it grows Pull: the animal eats because it wants to grow

Ad libitum feed intake: push or pull? (the chicken-or-egg question, even for pigs)

	Pull	Push
Explicit control function*	Potential lipid deposition	Feed intake
Additional issues and questions	Constraints can be imposed on feed intake (e.g., gut capacity, heat stress)	What controls ad libitum feed intake (DM, AME, NE)?
Consequence	The animal eats for net energy	Lipid deposition becomes an « energy sink »

*In addition to a function describing protein deposition

Whittemore and Fawcett (1974). Anim. Prod. 19:221-231

Concepts used in nutritional growth models

Concepts used in nutritional growth models

Processes involved in amino acid utilization

- Digestion
- Absorption
- Maintenance
- Synthesis of non-protein nitrogen compounds
- Transamination
- Amino acid imbalance
- Catabolism due to an excess supply
- (Preferential) catabolism to supply energy
- Inevitable catabolism
- Deposition (but the amino acid composition differs among proteins)

Moughan (2008). In: Mathematical modeling in animal nutrition. J. France and E. Kebreab (eds.)

Towards more mechanistic models

Fig. 2. Diagrammatic representation of the pig growth model. AA, amino acid; VFA, volatile fatty acid; FA, fatty acid. ○, Energy use in transport; □, energy use in reaction; ■, ATP production in reaction.

Halas et al. (2004). Br. J. Nutr. 92:707-723

Towards more mechanistic models

Homeostatic regulation

(short-term regulation)

Homerhetic regulation

(long-term regulation)

- dS/dt = (**A C**) x S
- **A** = $k_1 + k_2 \exp(-k_3 x \text{ time})$
- **C** = $k_1 + k_4 \exp(-k_5 x \text{ time})$

At maturity: $A = C = k_1$

Lovatto and Sauvant (2003). J. Anim. Sci. 81:683-696 Rivera-Torres *et al.* (2011). J. Anim. Sci. 89:3170-3505

How far should we go in further refining our nutritional models?

Salway (2017). Metabolism at a glance, 4th edition. Wiley Blackwell

How far should we go in further refining our nutritional models?

cost = 2820/31 = 91.0 kJ/ATP

1 glucose \rightarrow glycogen \rightarrow 30 ATP

cost = 2820/30 = 94.0 kJ/ATP

cost = (2820*6/31)/2 = 272.9 kJ/ATP

cost = 2820*14/334 = 118.2 kJ/ATP

Energy efficiency of glucose \rightarrow **ATP**

glucose \rightarrow glutamate \rightarrow ATP cost = 2820/(29.75) = 94.8 kJ/ATP

1 glucose + 6 $O_2 \rightarrow 31 \text{ ATP} + 6 \text{ CO}_2$

direct	91.0 kJ/ATP = 100%
via glycogen (muscle)	97%
via lactate (gluconeogene	sis) 33%
via lactate (oxidation)	100%
via lipid	77%
via glutamate	96%

Modeling biological functions

Feed-a-Gene

Our capacity to observe is increasing exponentially

Our capacity to observe is increasing exponentially

behavior and welfare

image analysis serotonin, cortisol

individual feed intake

feed intake patterns feeding behavior

digestive efficiency

digestibility markers gut health microbiota

metabolic efficiency

transcriptomics proteomics metabolomics

Conclusions

- We still have a long way to go to understand the full story of nutrition and metabolism
- Tool development is an essential element in model uptake
- Monitoring/phenotyping/big data will bring new life and new challenges to nutritional modeling

EU funded Research project

2015 2020

€10 M Budget

Adapting the **feed**, the **animal** and the **feeding techniques** to improve the efficiency and sustainability of monogastric livestock production systems (www.feed-a-gene.eu)

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531

EU + China 15 Industry

Academic

23

Partners