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RESUME 

Bien que des approches non génétiques et génétiques aient été mises en œuvre pour améliorer l’efficacité 

alimentaire des animaux au cours des dernières années, le coût des aliments constitue encore la plus 

grande partie des coûts de production de nombreux systèmes d’élevage. De plus, une efficacité 

alimentaire non optimale augmente l’impact environnemental de l’élevage par gaspillage d'aliments. Au 

cours des dernières décennies, les progrès dans les technologies à haut débit pour la gestion des animaux, 

notamment le développement de distributeurs automatiques d’aliment, permettent d’obtenir de 

nombreuses mesures répétées au cours du temps (données longitudinales) de la consommation 

individuelle des animaux. L'objectif de cette thèse était de développer de nouveaux modèles génétiques 

pour mieux quantifier le potentiel génétique des animaux pour l'efficacité alimentaire en utilisant ce type 

de données. Les données de 2435 porcs Large White en croissance provenant d'une expérience de 

sélection divergente pour la consommation résiduelle ont été utilisées au cours de cette thèse. Dans cette 

population, les mâles étaient pesés chaque semaine alors que les femelles et les mâles castrés étaient 

pesés tous les mois entre 10 et 23 semaines d’âge. Dans une première étape, nous avons comparé 

différentes approches pour prédire les poids corporels hebdomadaires manquants de ces animaux afin 

d’améliorer l’évaluation de leur efficacité alimentaire. Pour la période testée, une interpolation quasi 

linéaire basée sur les semaines adjacentes est la meilleure approche pour traiter les poids corporels 

manquants dans notre ensemble de données. Dans un second temps, différents modèles longitudinaux 

tels que les modèles de régression aléatoire (RR), les modèles antédependants structuraux (SAD) et les 

modèles de type « character process » ont été comparés pour l’analyse de l’efficacité alimentaire. La 

comparaison a été réalisée en se basant sur des critères d’ajustement aux données (Log vraisemblance, 

Critère d'Information Bayésien), sur les estimations des composantes de variances (estimations de 

l'héritabilité, des variances génétiques et des corrélations génétiques entre semaines) et sur la capacité 

prédictive (coefficients de concordance de Vonesh) de chaque modèle. Les résultats ont montré que le 

modèle SAD est le plus parcimonieux pour l’indice de consommation (IC) et la consommation 

résiduelle, deux mesures d’efficacité alimentaire. Ce modèle fournit également des capacités prédictives 

similaires à celles des autres modèles. Un critère de sélection combinant les prédictions des valeurs 

génétiques hebdomadaires de chaque animal a été proposé pour des applications pratiques de ces 

modèles dans un objectif de sélection. En outre, nous avons évalué comment l'information génomique 

pouvait améliorer la précision des prédictions des valeurs génétiques des animaux pour le gain moyen 

quotidien et la consommation résiduelle, en appliquant des approches génomiques « single-step » aux 

modèles RR et SAD. Les résultats obtenus ont montré que les précisions étaient faibles et les biais de 

prédiction importants pour les deux caractères, et qu’ils n'étaient pas améliorés par l’apport de 

l’information génomique. Enfin, nous avons montré que la sélection divergente pour la consommation 

résiduelle avait un impact majeur sur les trajectoires de l’indice de consommation et de la consommation 

résiduelle pendant la croissance dans chaque lignée. En conclusion, cette thèse a montré que la sélection 



 
 

iii 
 

pour des trajectoires d'efficacité alimentaire est faisable avec les informations disponibles actuellement. 

Des études supplémentaires sont nécessaires pour mieux évaluer le potentiel de l'information génomique 

avec ces derniers modèles et pour valider les stratégies de sélection sur ces trajectoires d’efficacité 

alimentaire au cours du temps dans la pratique.  
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ABSTRACT 

Although non-genetic and genetic approaches heavily improved feed efficiency in the last decades, feed 

cost still contributes to a large proportion of pork production costs. In addition, the limited efficiency of 

feed use not only increases the environmental impact due to the waste of feed. Over the last decades, 

advances in high-throughput technologies for animal management, including automatic self-feeders, 

created a proliferation of repeated data or longitudinal data. The objective of this thesis was to develop 

new genetic models to better quantify the genetic potential of animals for feed efficiency using 

longitudinal data on body weight (BW), feed intake and body composition of the animals. Data from 

2435 growing Large White pigs from a divergent selection experiment for residual feed intake (RFI) 

were used. In this population, males were weighted every week whereas females and castrated males 

were weighted every month at the beginning of the test (10 weeks of age) and more often towards the 

end of the test (23 weeks of age). In a first step, different approaches investigated how to predict missing 

weekly BW for intermediate stages. For the tested period, a quasi linear interpolation based on the 

adjacent weeks is the best approach to deal with missing BW in our dataset. In a second step, different 

longitudinal models, such as random regression (RR) models, structured antedependence models (SAD) 

and character process models, in which the covariances between weeks are accounted for, were 

compared. The comparison focused on best-fit to the data criteria (Loglikelihood, Bayesian Information 

Criterion), on variance components estimations (heritability estimates, genetic variances and genetic 

correlations between weeks) and on predictive ability (Vonesh concordance coefficients). The results 

showed that SAD is the most parsimonious model for feed conversion ratio (FCR) and for RFI, two 

measures of feed efficiency. The SAD model also provided similar predictive abilities as the other 

models.A selection criterion combining the weekly breeding values was proposed for practical 

applications to selection. In addition, we evaluated the potential of genomic information to improve the 

accuracy of breeding value predictions for average daily gain and residual feed intake, applying single 

step genomic approaches to the RR and SAD models. In our dataset, prediction accuracies was low for 

both traits, and was not much improved by genomic information. Finally, we showed that divergent 

selection for RFI had a major impact on the FCR and RFI profile trajectories in each line. In conclusion, 

this thesis showed that selection for trajectories of feed efficiency is feasible with the current available 

information. Further work is needed to better evaluate the potential of genomic information with these 

models, and to validate strategies to select for these trajectories in practice. 
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Chapter 1 - LITERATURE REVIEW 

GENETIC MODELS FOR FEED EFFICIENCY 
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1.1. Feed efficiency - opportunities and challenges  

According to the United Nations Population Fund, the global population reached 7.6 billion in 

2017, and is expected to reach 9.1 billion by 2050 (Godfray et al., 2010). To comply the food 

security requirements of these people, we need to increase by 70% our food production in a 

context of increases in energy price, water depletion, loss of farmlands due to urbanization, and 

flooding and droughts caused by climate change (Nikos Alexandratos and Bruinsma, 2012). 

Feed efficiency is defined as the ability to transform input (feed) into output (such as body 

weight). Improving it decreases the requirements for resources related to input production 

(water, farmland), and reduces nutrient losses in manure. Thus, feed efficiency is a key factor 

to increase the profitability of livestock production, and to decrease its environmental impact. 

Although both genetic and non-genetic approaches (including nutritional management) have 

been conducted over the last decades to increase feed efficiency, feed costs still account for a 

significant part of animal production (for pork production: 75% in the Occidental countries, 

70% in France) (Patience et al., 2015; Gilbert et al., 2017). 

Different criteria have been proposed in the literature to quantify feed efficiency, such as feed 

conversion ratio (FCR) and residual feed intake (RFI) (Patience et al., 2015). In general, feed 

efficiency traits are heritable. They are affected by many factors, depending on the animal itself, 

such as animal genetics, sex, immunological status, growth rate, and on external factors, such 

as feed ingredients, nutrient composition, thermal environment, feed processing and delivery, 

etc (Patience et al., 2015), and also gut microbiome (Quan et al., 2018). In few studies, it has 

been reported that feed intake and feed efficiency traits change over time (David et al., 2015; 

Shirali et al., 2015). A selection strategy accounting for these changes could provide better 

genetic gains than the current selection. Due to lack of repeated measurements for this 

phenotype and its components (for instance, feed intake and body weight gains over successive 

periods), selection is usually applied to one single record of feed efficiency over a given test 

period. Thanks to automatic devices combined with electronic identification (i.e., automatic 

self-feeders), repeated records related to growth (body weight) and feed consumption during a 

test period are now available. It thus makes it possible to calculate a repeated measurement of 

feed efficiency at the individual level.  

This type of data has specific properties: repeated data for each animal are correlated. Therefore, 

there is a need for special statistical methods that can not only account for changes of the mean 

curve over time, but can also handle change of covariances between measurements. To meet 
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these constrainsts, the analysis has to be “efficient” in treating a large number of observations 

for each subject.  

1.2. Feed efficiency, related traits and genetic evaluation 

In growing animals, there are several criteria to evaluate feed efficiency based on input (feed 

intake) and output (e.g. weight gain and its composition). The two main criteria in pigs are feed 

conversion ratio and residual feed intake. Some other measures are reported in the literature to 

quantify feed efficiency: partial efficiency of growth (Kellner, 1909), relative growth rate 

(Fitzhugh and Taylor, 1971), Kleiber ratio (Kleiber, 1947), and residual daily weight gain 

(Koch et al., 1963; Coyne et al., 2017), but their use is scarce.  

1.2.1. Feed conversion ratio 

Feed conversion ratio is the feed consumed per unit of body weight gain over a given period of 

growth (Brody, 1945), i.e. the inverse of feed efficiency. A low FCR is thus desirable in animal 

production. Since FCR is the ratio between feed intake (average daily feed intake ADFI) and 

body weight gain (average daily gain ADG), there might be two animals with the same FCR 

but with different ADFI and ADG. The consequences of selection for FCR on correlated traits 

such as ADG, ADFI and body composition are usually difficult to predict: the statistical 

properties of ratios are not optimum for breeding, which essentially assumes linear 

dependencies between traits. Only very recently, Shirali et al., (2018) proposed an exact 

Bayesian approach to predict genetic gains for FCR without assumptions or approximations. 

To overcome this limit, several criteria with different statistical properties have been proposed.  

1.2.2. Residual feed intake 

Residual feed intake is the difference between the observed feed intake and the expected feed 

intake based on animal requirements for maintenance and production. The notion of “residual 

feed intake” was mentioned for the first time in 1941 by Byerly (1941). Then, RFI was firstly 

proposed for evaluating feed efficiency in beef cattle by Koch et al. (1963), and later introduced 

in laying hens (Bordas and Merat, 1981), in pigs (de Haer et al., 1993), and other species as 

well as rabbits (Larzul and de Rochambeau, 2005); rainbow trout (Silverstein et al., 2005); 

broilers (Aggrey and Rekaya, 2013); ducks (Drouilhet et al., 2014). Depending on how the RFI 

definition is applied and to which species and production type, there are different approaches 

to compute RFI. Generally, RFI is calculated as the residual of a multiple linear regression that 
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includes as covariates indicators of production requirements (ADG and an estimator of body 

weight gain composition in species where its variability is sufficient, such as backfat thickness 

in pigs (BFT)), and of maintenance requirements (average metabolic body weight (AMBW)). 

An animal with reduced RFI is then an animal that eats less than predicted based on its 

performance, so it is more efficient.  

Depending if the multiple linear regression accounts for phenotypic or genetic correlations, RFI 

is independent of the traits used in the regression at the genetic or at the phenotypic level. Thus, 

selection for reduced RFI should not have detrimental effects on animal growth or size, which 

is one of the main advantages of using RFI as a measure of feed efficiency trait instead of FCR. 

The other main advantage of this trait is that it has linear relationships with other traits of the 

breeding objectives, so it is easier to compute weights for selection indexes and predict genetic 

gains than for FCR. In selection experiments in pigs, selection for low RFI has been associated 

with lower feed intakes and leaner carcasses, with moderate effects on growth rate (Young and 

Dekkers, 2012; Gilbert et al., 2017). 

Due to practical constraints, the use of RFI in animal selection could suffer from some 

limitations. First, the errors in measures of ADG, BFT, and AMBW potentially result into 

“noise” contributing to RFI. Secondly, if some covariates are missing, RFI cannot be calculated 

for a given individual. Finally, because body composition measurements are needed for RFI, 

that are not used to compute FCR, so it is more expensive to collect. However, body 

composition is usually measured in vivo on candidates or on carcass in most pig selected 

populations, so the actual additional costs are null compared to a classical pig selection scheme.  

1.2.3. Heritabilities and genetic correlations between traits related to feed efficiency 

Heritabilities reported in the literature for feed efficiency traits in pigs are presented in Table 

1.1. In general, FCR has moderate to high heritability estimates (ranging from 0.15 to 0.45). 

The heritability estimates for RFI range from 0.10 to 0.44 (Nguyen et al., 2005; Gilbert et al., 

2007; Cai et al., 2008; Saintilan et al., 2013). 

Phenotypic and genetic correlations between feed efficiency and other traits are shown in 

Tables 1.2. As mentioned in many studies (Gilbert et al., 2007; Hoque et al., 2007; Cai et al., 

2008), FCR is highly correlated with ADFI, ADG at the phenotypic level whereas RFI is 

generally independent or has low correlations with growth and body composition traits (ADG 

and BFT) at both the phenotypic and the genotypic levels. In addition, a high correlation 

between RFI and FCR (0.84, Hoque et al., 2007, 0.71, Gilbert et al., 2017) is estimated, 

confirming that selection for decreasing RFI improves FCR (Hoque et al., 2009).  
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Table 1.1. Heritability estimates of feed efficiency traits in pigs 

Trait Population Heritability Reference 

FCR Large White  0.45±0.07 Gilbert et al., 2007 

Large White (10694 dams/2342 sires) 0.30±0.03/0.30±0.06 Saintilan et al., 2013 

1047 Duroc boars  0.32±0.09 Jiao et al., 2014 

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) 

0.17±0.01 (purebred)/ 

0.15±0.02 (crossbred) 

Godinho et al., 2018 

RFI Large White pigs selected for growth rate on 

restricted feeding 

0.22 to 0.24 ±0.08 Nguyen et al., 2005 

purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line)  

0.27 to 0.36 Cai et al., 2008 

Large White  0.24±0.03 Gilbert et al., 2007 

Large White (10694 dams/2342 sires) 0.21±0.03/0.26±0.06 Saintilan et al., 2013 

BW 1047 Duroc boars  0.34±0.28 Jiao et al., 2014 

BFT 1047 Duroc boars  0.58±0.09 Jiao et al., 2014 

1622 Duroc pigs 0.53±0.15 Ito et al., 2018 

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) 

0.47±0.01 (purebred)/ 

0.43±0.02 (crossbred) 

Godinho et al., 2018 

ADFI 1047 Duroc boars  0.66±0.11 Jiao et al., 2014 

3096 Large White pigs 0.11-0.55 David et al., 2015 

1622 Duroc pigs 0.42±0.17 Ito et al., 2018 

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) 

0.23±0.02 (purebred)/ 

0.28±0.03 (crossbred) 

Godinho et al., 2018 

ADG 1642 Duroc (380 boars, 868 gilts, and 394 

barrows)  

0.48 ± 0.03 Hoque et al., 2009 

1047 Duroc boars  0.44±0.11 Jiao et al., 2014 

1622 Duroc pigs 0.45±0.13 Ito et al., 2018 

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) 

0.23±0.01 (purebred) 

0.26±0.01 (crossbred) 

Godinho et al., 2018 

ADFI = Average daily feed intake; ADG = Average daily gain; AMBW = average metabolic body 

weight; RFI = residual feed intake; BFT = Backfat thickness 
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Table 1.2. Genetic correlations ± standard errors between feed efficiency and other traits in 

pigs 

trait1/trait2 Population Genetic correlation Phenotypic 

correlation 

FCR/RFI  Large White (Gilbert et al., 2007) 0.71±0.12 0.63 

1047 Duroc boars (Jiao et al, 2014) 0.53±0.31  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.82±0.02 (purebred)/ 

0.55±0.06 (crossbred) 

 

ADFI/RFI 

 

Large White (Gilbert et al., 2007) 0.77±0.10 0.68 

1047 Duroc boars (Jiao et al, 2014) 0.07±0.09  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.73±0.05 (purebred)/ 

0.65±0.05 (crossbred) 

 

Purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line) (Cai et al., 2008) 

0.52±0.12 0.63±0.03 

ADG/RFI Large White (Gilbert et al., 2007) 0.00±0.12 0.05 

1047 Duroc boars (Jiao et al, 2014) -0.05±0.07  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.34±0.05 (purebred)/ 

0.27±0.07 (crossbred) 

 

purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line) (Cai et al., 2008) 

0.17±0.18 0.06±0.05 

BFT/ADG 1622 Duroc pigs (Ito et al., 2018) 0.35±0.18  

1047 Duroc boars (Jiao et al, 2014) 0.22±0.04  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.24±0.02 (purebred) 

-0.05±0.04 (crossbred) 

 

purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line) (Cai et al., 2008) 

0.45±0.13  

BFT/FCR 1047 Duroc boars (Jiao et al, 2014) -0.12±0.23  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.37±0.04 (purebred)/ 

0.49±0.06 (crossbred) 

 

BFT/RFI 

 

1047 Duroc boars (Jiao et al, 2014) -0.11±0.19  

purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line) (Cai et al., 2008) 

-0.14±0.16 -0.01±0.04 

ADG/ADFI 1642 Duroc pigs (Hoque et al., 2009) 0.84±0.03 0.73 

1622 Duroc pigs (Ito et al., 2018) 0.79±0.08  

1047 Duroc boars (Jiao et al, 2014) 0.32±0.05  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.71±0.03 (purebred)/ 

0.66±0.04 (crossbred) 

 

purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line) (Cai et al., 2008) 

0.88±0.05 0.73±0.02 

BFT/ADFI 1622 Duroc pigs (Ito et al., 2018) 0.41±0.18  

1047 Duroc boars (Jiao et al., 2014) 0.36±0.04  

purebred Yorkshire pigs, a selection line for 

reduced RFI (low RFI line) (Cai et al., 2008) 

0.57±0.10 0.49±0.04 

FCR/ADG 1047 Duroc boars (Jiao et al., 2014) -0.21±0.05  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.08±0.05 (purebred)/ 

-0.29±0.07 (crossbred) 

 

 

FCR/ADFI 

1047 Duroc boars (Jiao et al, 2014) 0.13±0.11  

Large White, 22984 purebreds/8657 crossbred 

(commercial animals) (Godinho et al., 2018) 

0.71±0.03 (purebred)/ 

0.49±0.06 (crossbred) 

 

ADFI = Average daily feed intake; ADG = Average daily gain; AMBW = Average Metabolic body weight;  

RFI = residual feed intake; BFT = Backfat thickness 
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1.3. Genetics models for the analysis of longitudinal data 

Having longitudinal records for a trait means that repeated measures have been recorded on the 

individuals, at various times during their life. Meyer (2005) called “function-values traits” this 

type of data in quantitative genetics. The major advantage of such data is the possibility to 

describe the trait change across time. In addition to genetic aspects for selection of more 

accurate traits, the analysis of longitudinal data can help to provide real-time monitoring of the 

animal.  Applying longitudinal models is expected to increase accuracy of selection (Begli et 

al., 2017). Nowadays, to handle longitudinal data, there are three options: parametric (best 

linear unbiased prediction, LASSO method, Bayesian, Bayesian LASSO, linear least-square 

regression models, ridge regression), semi-parametric (Niu et al., 2017) and non-parametric 

(Rice and Wu, 2001; Hulin and Jin-Ting, 2006) methods. In the framework of this literature 

review chapter, we will only focus on the parametric methods based on linear mixed models, 

such as random regression models, character process and antedependence models, which have 

been used in quantitative genetics, and we will compare them to multi-trait models. 

All linear mixed models applied to repeated measurements can be decomposed into genetic and 

environmental components as follows:   

( ) ( )ij ij i j i j ijy u t p t = + + +                       (Eq.1) 

Where 
ijy  is the phenotype at time tj for the animal i; 

ij corresponds to fixed effects. ( )i ju t  

and ( )i jp t  are the random genetic and permanent animal effects functions, with 

( )~ 0,N u G A  and ( )~ 0,N p P I , where A is the known relationship matrix, I the identity 

matrix, and G and P the covariance matrices between measurements of traits (dimension l l , 

with l is the number of time points) for genetic and permanent environmental effects, 

respectively. Finally, ij is the random residual term ( )2~ 0,N ε I . The random effects are 

independent from one another. 

1.3.1. Multiple trait models 

A first model, making no assumption on the structure of G and P, is the multiple trait model 

(MT); this model considers G and P as unstructured matrices. In that case, the residual is 

formally excluded from E.q.1 to avoid identifiability problems, and is absorbed in p. 

Because all variance components have to be estimated, the MT approach is only used when 

there are few measurements per animal performed at the same time (or same age) for all 



 
 

8 
 

animals. In other cases, the dimensionality of the problem becomes too large. Indeed, the main 

issue of MT is the large number of parameters to estimate when the number of time points 

increases (l(l+1)/2 per random terms). Generally, the MT model shows convergence problems 

when more than six time points are considered (Rafat et al., 2011). In addition, measurements 

have to be performed at the same time (or age). To address this issue, the measurements can be 

classified into different categories before applying a MT mixed model, as proposed by Cai 

(2010). It has been shown that MT is much better than repeatability models (see below), that 

consider all time points as the repetition of the same trait, in terms of predictive ability, for 

instance for shell quality and monthly egg production in poultry (Kranis et al., 2007; Wolc et 

al., 2017). When the number of repeated measurements is too large, application of the MT 

model is unfeasible, and one has to reduce the number of parameters to estimate to obtain 

variance components of Eq.1.  

There are then two options to reduce the number of parameters to estimate: 

i) model the form of the covariance 

- Repeatability model 

- Character process (CP) model 

ii) model the form of the random effect functions (u(t) and p(t)) 

- Random regression (RR) model 

- Structure antedependence (SAD) model 

1.3.2. Repeatability models  

This model regards the repeated measurements as the same trait over time. In other words, the 

repeatability model assumes that the genetic and permanent environmental effects are constant 

over the whole test period. This results in equal variances and correlations of 1 between the 

random effects over time. The intra-class correlation between the records (intra-individual), the 

so-called repeatability, is defined as follows:  

 

2 2

2 2 2

u p

u p e

repeatability
 

  

+
=

+ +
  

in which 
2

u , 2

p , 
2

e  are the variances with respect to genetic, permanent environmental and 

error terms, respectively. The main advantage of this model is its simplicity in terms of 

computational requirements. This model has been used in the genetic evaluation of milk 

production up to 1999 (Interbull 2000), or very recently to evaluate genetic parameters for 

nutrient digestibility in pigs (Ouweltjes et al., 2018). However, the main assumption of the 
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repeatability model (same trait over time) is strong and questionable for many traits, so 

alternative models have been proposed. 

1.3.3. Character process models 

This category of models constructs directly the variances covariances matrix under the 

asumption that the genetic correlation gradually decreases with increasing distance between 

measurements (Pletcher and Geyer, 1999). In order to reduce the number of parameters to 

estimate, CP aims to model the covariance as functions of time. For these models, the genetic 

covariances can be decomposed into: ( ) ( )( ) ( ) ( )1 2 1 2 2 1cov var( ( )) var
u

t t t t t t=   −u ,u u u , 

and similarly for the permanent effects. The correlation between measurements ( )2 1u
t t −  

under CP models may be modelled as a uniform, a first-order autoregressive, a Gaussian, a 

Cauchy, a standard normal or a bilateral exponential function (Pletcher and Geyer, 1999), and 

they can be modeled with homogenous or heterogenous variances (David et al., 2015). 

For genetic evaluation, CP models were firstly developed by Pletcher and Geyer (1999). 

Jaffrézic (2000) made an interesting contribution with regard to testing different covariance 

functions and applied CP models to quantitative genetics. David et al. (2015) examined this 

type of model on the genetic components of feed intake of Large White pigs and rabbits. 

Compared to random regression model, CP is much better at estimating the genetic effects. 

Precisely, the CP models can adequately capture a correlation that declines rapidly to zero as 

values become further separated in time (Jaffrézic, 2000). However, CP model is worse at 

approximating the correlation structure (Jaffrézic and Pletcher, 2000; David et al., 2015). The 

use of this model is limited because it needs many parameters for taking into account the 

nonstationary variances of the longitudinal data over time. In addition, its extension to the 

multiple trait cases is not straightforward.  

1.3.4. Random regression models  

In the field of animal breeding, the term “random regression” was mentioned for the first time 

by Henderson in 1982, then Dekkers proposed to use random regressions for animal additive 

genetic model in 1992. Dekkers presented his work at the 5th world congress of genetics applied 

to livestock production (WCGALP) in Guelph (Schaeffer and Dekkers, 1994; Schaeffer and 

Jamrozik, 2008). Then, Diggle et al., (1994) used this model for analyzing longitudinal data 

and estimating genetic parameters. 
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The RR models consider the genetic and permanent environmental terms as functions of time 

jt  as: ( ) ( )
0

m

i j ir r j

r

u t a f t
=

=  for the genetic effects of an individual i (same model for the 

permanent effect). The distribution of the random coefficients a is given as follows: 

0 0

0m

a

N ,

a

    
    

    
        

K A  where K is ( ) ( )1 1m m+  +  covariance matrix of the random coefficient. 

The covariance matrix between time points is then 
'

G FKF= , where F  is the ( )1l m +  (l= number 

of time points) matrix of the f function for all time points. The estimated breeding value for time 
jt is 

given by:  

 ( ) ( )
0

ˆ
m

i j ir r j

r

EBV t a f t
=

=  

Several functions f have been proposed in the literature. The simplest one is ( ) r

rf t t= , which 

consists in a polynomial function of time. However, this model suffers from a high correlation 

between the random parameters. To reduce the correlation between random coefficients, 

orthogonal polynomials functions are used.  

Random regression models using orthogonal polynomials (RR-OP) 

The most often used orthogonal function is the orthogonal Legendre polynomials:  

( ) ( ) ( ) ( )
0

1
1 1

2j i i

r
r k k

r j r t t tr
k

r
f t q q q

k


−

=

 
= = − + 

 
   

where q is the time on the [-1,1] interval: min

max min

1 2
j

j

t

t t
q

t t

− 
= − +  

− 
 (Schaeffer, 2004).       

Meyer and Hill (1997) demonstrated the equivalence between RR models and the genetic 

orthogonal covariance functions which were earlier proposed by Kirkpatrick et al. (1990).  

Random regression using orthogonal polynomials models have been widely used, for instance 

for growth traits (Zumbach et al., 2010), BW, feed intake and residual feed intakes for pigs 

(Coyne et al, 2017), for milk production in cattle and goats (Silva et al., 2013), for egg 

production in poultry (Wolc and Szwaczkowski, 2009), for volume of ejaculate in Holstein 

bulls (Carabaño et al., 2007), for efficiency in Holstein cattle (Spurlock et al., 2012), and for 

carcass traits in beef cattle (Englishby et al., 2016). Kranis et al., (2007) compared genetic 

parameter estimates using RR and MT models for egg production in turkeys and concluded that 

both models were equally effective to describe the dynamics of genetic variance over time. 
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Jamrozik et al. (2002) illustrated that RR models could deal with test day records from different 

countries in which the animal management varies from one to another.  

The main limit of RR with orthogonal polynomial functions is the possibility of border effects 

(Jaffrézic et al., 2004; David et al., 2015), that result in inflated variances at the extreme time 

points. This can be improved using spline (Speidel et al., 2010) functions (see below) or 

considering heterogeneous residual variances. In addition, if the degree of the polynomial 

function is high RR can require a large number of parameters to estimate. According to Misztal 

(2008), in several RR models, poor starting values may make convergence impractical or 

generate inaccurate estimates even from within the parameter space.  

Random regression models using splines 

Splines consist in curves constructed from pieces of low degree polynomials, which are joined 

smoothly at selected points (knots) (Meyer and Kirkpatrick, 2005). They can be modeled in a 

RR model. Random regression using splines (RR-SL) model is used in longitudinal genetic 

studies, thanks to its ease of use and speed of convergence (Speidel et al., 2010). Misztal (2006) 

argued that splines also have the advantages of quicker convergence than Legendre 

polynomials, maybe because spline coefficients are sparser than those of polynomials. Thus, 

 they are quite flexible for modeling and simple for biological interpretation (Laureano et al., 

2014). However, the selection of number and position of the knots is challenging (Speidel et 

al., 2010). To ease these choices, some authors proposed specific types of splines such as cubic 

smoothing splines (White et al., 1999) for modeling the lactation curves. Alternatively, B-spline 

is a particular type of splines that was used in RR as covariables in many studies (Rice and Wu, 

2001). 

1.3.5. Structured antedependence model 

Antedependence models were firstly proposed by Gabriel (1962): it considers that the 

observation at time t is a regression on that/those at previous times. Then, Zimmerman and 

Núñez-Antón (1997) proposed to fit a parametric function on antedependence terms in order to 

decrease the number of parameters to estimate, leading to structured antedependence model 

(SAD). Jaffrézic and Pletcher (2000) and Jaffrézic et al (2004) applied the SAD model to 

genetic studies and found it promising for genetic evaluation.  

The SAD model includes specific terms called antedependence and innovation variance 

parameters. Each random function is defined by three parameters: the order of the 
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antedependence ( ) , the degree of the polynomial function for each antedependence parameter 

( 1  to  ), and the degree of the polynomial for the innovation variance (  ). The function for 

the random effect u is ( ) ( ) ( )
1

i j sj i j s i j

s

u t u t e t



 −

=

= + , where ( )sj s jf t=θ  is the sth 

antedependence parameter for time jt , and ( )i je t  is the error term for animal i at time tj. u  and 

e  are independent, and 
2( ) ~ (0, ( ))j e jt N te A , where 

( )
2

je t
  is called the innovation variance. 

To reduce the number of parameters, continuous functions of time are assumed for 

antedependence parameters 
0

s

q

sj sq j

q

d t



=

= , and for the innovation variance 

2

0

( ) exp q

e j q j

q

t b t



=

 
=  

 
 , in which d and b are the coefficients for antedependence parameters 

and innovation variance, respectively. In this thesis, after David et al. (2015), we noted a SAD 

model with a given set of parameters as follows: SAD - 1 ,…,   . When performing a SAD 

model, a Cholesky decomposition of the inverse of the variance-covariance matrix  

 

G-1=L’D-1L with: 

( )

( )

( )

( )

1

2

2

2

3

2

4

0
1 0

1
,

1

1 0

e

esj

e

e









 
   
   −
 = =  
   
    

 

L D  

in which L is a lower triangular matrix with 1s on the diagonal and the antedependence 

parameters 
kj− as below-diagonal entries, and D is a diagonal matrix with innovation variances 

( )
2

e t
 . 

Parameters of the SAD model can be estimated using a OWN function in ASREML(Gilmour 

et al., 2009), which requires the specification of a G-1 and its derivatives with respect to each 

of the parameters (Jaffrézic et al., 2003; David et al., 2015). To facilitate convergence and avoid 

identifiability problems between the structured permanent and residual covariance matrices, the 

residual variance is included in the variance-covariance matrix of the permanent environmental 

effects, as proposed in previous works (David et al., 2015).  

The SAD models provide a parsimonious and flexible way for modeling longitudinal data, as 

only one additional parameter is needed to increase one order of antedependence (Jaffrézic et 
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al., 2004). They also better fit the variance-covariance structure of the data than polynomial-

based random regression models. They also have better prediction of missing values than RR 

(Jaffrézic et al., 2004; David et al, 2015). For the SAD model, Hurvich and Tsai (1989) and 

Núñez-Antón and Zimmerman (2000) proposed to use a Akaike information criterion (AIC) to 

select the best-fitted model. Jaffrézic et al. (2003) proposed to increase the antedependence 

order until the additional antedependence coefficient tends to zero.  

From 2017, an OWN function program for ASReml supporting the performance of single or 

multiple traits SAD is freely available at https://zenodo.org/record/192036. This contributed as 

a new tool for extending the use of the SAD model for genetic evaluation and to other fields.  

 

1.3.6. Best-fitted data model - goodness of fit 

The purpose of comparison of models is to find the best-fitted model for a given dataset with 

the fewest parameters. For nested models, the best model within a category of model can be 

selected using a likelihood ratio test. To compare non-nested models, many criteria have been 

proposed, combining information such as the restricted maximum likelihood values (logL), the 

number of covariance parameters in the model (c), the number of fixed effects (p), and the 

number of observations (N) of every analysis. Among others, the Akaike information criterion 

(AIC= -2logL +2p; Akaike, 1973), and the Bayesian information criteria (BIC = -2logL + 

c×log(N-p)); Schwarz, 1978) are popular. The model with the lowest AIC or BIC is considered 

as best fitting the data, given the model parsimony. The major difference between BIC and AIC 

is that BIC searches a compromise between the number of parameters and the amount of 

information available. Thus, when considering model parsimony, BIC may be a better indicator 

than AIC (Flores and van der Werf, 2015).  

 

As a genetic model should adequately model the genetic effects as well as the permanent 

environmental effects, the variance components, heritabilities and genetic correlations across 

times should be compared for the different tested models. 

 

1.4. Predictive ability  

Cross-validation can be used to assess the predictive ability of models. For this, the data are 

divided into a training set and a validation set. There are many criteria to compare the predictive 

ability of different models. Among them, the Vonesh Concordance coefficients (Vonesh et al., 

1996) is given by the following equation: 

https://zenodo.org/record/192036
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2

1

2 2 2

1 1

1

n

i i

i

n n

i i

i i

ˆ( y y )

VCC

ˆ ˆˆ( y y ) ( y y ) n ( y y )

=

= =

−

= −

− + − +  −



 

 

where n is the number of animals with predicted phenotypes; iy  is the observed values; y is 

the average of observed values; iŷ is the predicted values of iy ; ŷ  is the average of predicted 

values.  

Other criteria are: mean square error of predictions (MSEP) (Andonov et al., 2013), correlation 

between predicted and observed phenotypes, correlation between predicted EBV and 

phenotypes or corrected phenotypes, and accuracy (correlation between EBV and corrected 

phenotypes divided by the square root of the heritability, often used to evaluate genomic 

prediction) (Begli et al., 2017).  

 

1.5. Including genomic information in genetic evaluations  

To predict animal breeding values, the Best Linear Unbiased Prediction (BLUP) approach, 

which uses a pedigree relationship matrix A to quantify the additive genetic effects, is 

commonly used since the 1980s, because it is simple and has low computational requirements. 

Over the last decades, high-throughput technologies allowed the identification of thousands of 

anonymous variants on the genome, such as single nucleotide polymorphisms (SNP). Recently, 

the GBLUP approach has been proposed by VanRaden et al. (2009), that includes such marker 

genotypes in a relationship matrix. Then, Legarra et al. (2009), Misztal et al. (2009) and 

Christensen and Lund (2010) simultaneously proposed single-step approaches in which the 

accuracy of genomic predictions can be improved by combining genomic information and 

information from traditional pedigree. This approach accounts for the fact that not all animals 

are genotyped, but their studies have been essentially limited to datasets with single records per 

animal.  

Until now, there are few published studies (e.g., Wolc et al., 2013; Koivula et al., 2015; Kang 

et al., 2017) that included genomic information for genetic evaluation of longitudinal traits. For 

instance, Jiang et al., (2015) used a multiple trait Bayesian multivariate antepependence model 

for genomic prediction, Begli et al. (2016) showed that a GBLUP with β-spline random 

regression models for ADFI and RFI traits in a chicken F2 population provided a higher 

prediction accuracy than that of BLUP. The use of genomic information is an increasing trend 

sustained by new computational techniques and power.  
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1.6. Objectives of the thesis and data 

The objective of this thesis is to test genetic models dealing with longitudinal data for feed 

efficiency, and evaluate their prediction properties in different contexts. To provide a 

comprehensive view of the proposed methodologies, all the work was applied to a dataset from 

experimental pig lines that will be described in the next paragraphs, before introducing the 

chapters of the thesis. 

 

1.6.1. Dataset  

Pigs and selection experiment 

Data used in this thesis come from a divergent pig selection experiment on residual feed intake. 

The initial population (generation G0) comprised 30 Large White litters from 30 sires and 30 

dams (F0). It was the basis to select a line of pigs for low RFI (LRFI) and another line for high 

RFI (HRFI). The selection was described in details in Gilbert et al. (2007). Across generations, 

an average selection pressure of 7% was applied on males, whereas no selection pressure was 

applied to the dams. Data were recorded on 1286 males, 689 females and 599 castrated males 

over 8 generations (G0 to G7). The average inbreeding level in the last generation was 0.19 in 

the LRFI line and 0.18 in the HRFI line. The animals from both lines were born in two herds 

and all tested in the INRA experimental farm located in Rouillé (GenESI, Vienne, France).  

 

Animal management and data collection 

Four groups of 12 pigs were housed in pens equipped with single electronic feeders (ACEMA 

64, Pontivy, France) in each batch of animals during growth (a batch being a group of animals 

born during a given week). They were acclimated to the feeder for one week before 

measurements could be used. Pigs were offered feed ad libitum, with a pelleted diet of cereals 

and soybean meal with 10 MJ NE/kg and 160 g CP/kg, and a minimum of 0.80 g digestible 

Lys/MJ NE. They had free access to water. The quantity of feed consumed was recorded after 

each visit to the electronic feeder. Pigs were on average 67 ± 1 days (27 ± 4 kg) at the beginning 

of the test, and were tested during the growing-finishing period up to 164 ± 11 days 

(112 ± 11 kg). As a result, up to 17 weekly records of ADFI and BW were available per animal. 

During the test period, body weights were recorded weekly for the males, whereas females and 

castrated males were weighted at 11, 15, 19 and 23 weeks of age, and more often if the test 
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lasted for more weeks. A total of 35 745 BW records were available from 2 583 animals over 

the 8 first generations (G0 to G7).  

The ultrasonic backfat thickness (BFT) was measured on males at around 35 kg, 65 kg, 90 kg 

and 95 kg body weight, as the average of six measurements, from three points on both sides of 

the spine at the level of the neck, the back and the kidneys. For the females and castrated males, 

BFT was measured similarly but at week 11, 15, 19 and 23. Weekly averages of daily feed 

intake (WDFI) were computed for each animal. Outlier values for WDFI and WDFI for which 

more than two days of records were missing in a given week were removed from the analysis, 

as reported by David et al. (2015). Pigs with less than three records of WDFI and BWs were 

removed from the dataset. The final set consisted in 34 789 WDFI records and 22 850 BW 

records for 2 435 animals. A total of 3 986 animals were tracked back in the pedigree file. The 

steps for excluding the outlier values are presented in table 1.3.  
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Table 1.3. Data description 

 males females castrated males Total 

Number of 

animals 

1286 599 698 2583 

WDFI (number 

of records) 

17398 8786 9561 35745 

BWs (number of 

records) 

16301 3430 3766 23497 

The animals with at least three records both BWs and FIs from above were kept 

 males females castrated males Total 

Number of 

animals 

1186 580 669 2435 

Age at beginning 67±1 days 67±1 days 67±1  days 67±1 days 

BW at beginning 27±4 kg 

WDFI (number 

of records) 

16866 8564 9329 34789 

BW (number of 

records) 

15808 3363 3679 22850 

Pen (levels) 16 16 16 16 

BW at the end 112±10 kg 111±7 kg 111±8 kg 111±9 kg 

Age at the end 164±10 days 166±11 days 162±11 days 164±11 days 

Max number of 

weeks  

16 

 

Herd of birth 

(levels) 

2 

 

Batch (levels) 33 29 34 66 
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1.6.2. Thesis organization 

Based on the dataset previously described, we first investigated methodologies to predict 

missing BW records to improve the prediction of breeding values for feed efficiency on a 

weekly basis (Chapter 2).  

In Chapter 3, we compared different approaches for estimating the covariance structure of 

longitudinal data of feed conversion ratio, and proposed criteria for animal selection using 

longitudinal data.  

In Chapter 4, we used genomic and pedigree information to evaluate models for the prediction 

of longitudinal RFI.  

In Chapter 5, we evaluated the impacts of divergent selection for RFI on the dynamics of FCR 

and RFI over time.  

Finally, in Chapter 6 a general discussion and conclusion will end this dissertation.   
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Chapter 2 - DEALING WITH MISSING BODY WEIGHTS IN 

GROWING PIGS 
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2.1. Predicting missing body weights to improve the prediction of estimated 

breeding values 

Today, with advances in self-feeder and electronic identification, the measurement of ADFI is 

relatively easily performed in routine. Unfortunately, the situation is slightly different for BW. 

Depending on the animal management strategy (measurement schedule), animals may not be 

measured at all time points, resulting in incomplete data. In addition, there may be errors in the 

recording, due to machine troubles and identification defaults, rodent activity, moisture, dust 

in the environment, and behaviors of the animals (Zumbach et al., 2010; Jiao et al., 2014), 

resulting in discarding some (automatic) records from the analysis. Altogether, that leads to 

non-monotonous missing data patterns. The issues related to missing data are still challenging 

because they can affect the genetic estimations. 

In our dataset, the missing proportion of weekly BWs of the females and castrated males was 

high (60%) (Table 1.3). As BW are essential inputs to calculate feed efficiency in growing pigs, 

we wanted to quantify how missing BW impact the estimation of genetic parameters for FCR. 

To address this question, we performed a simulation of missing BW patterns and proposed an 

approach for handling missing BW in our dataset. This work was published in Journal of 

Animal Science (2017). 

This chapter is organized as follows: firstly, the paper I presents results of a simulation study 

using a random regression model for genetic evaluation of longitudinal FCR. Secondly, to 

complement these results, we provide results from the same simulation study but using a simple 

repeatability model.  
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2.2. Article I: How to improve breeding values prediction for feed 

conversion ratio in case of incomplete longitudinal body weights 

(Article I: Huynh-Tran, V. H., H. Gilbert, and I. David. 2017. How to improve breeding value 

prediction for feed conversion ratio in the case of incomplete longitudinal body weights. J. 

Anim. Sci. 95:39–48. doi:10.2527/jas.2016.0980) 
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INTRODUCTION

Although genetics and management of pigs have 
been improved in recent decades, feed still accounts for 
around two-thirds of the production costs in western 
countries (Agriculture and Horticulture Development 
Board, 2016; Patience et al., 2015). In addition, feed 
efficiency is a trait of importance in several species 
(Nardone et al., 2010). In practice, feed efficiency is 
generally expressed as its inverse trait, the feed conver-
sion ratio (FCR), which corresponds to the ratio of feed 
intake (FI) to BW gain (Losinger, 1998). Today, with 

How to improve breeding value prediction for feed  
conversion ratio in the case of incomplete longitudinal body weights1
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ABSTRACT: With the development of automatic 
self-feeders, repeated measurements of feed intake are 
becoming easier in an increasing number of species. 
However, the corresponding BW are not always record-
ed, and these missing values complicate the longitudinal 
analysis of the feed conversion ratio (FCR). Our aim 
was to evaluate the impact of missing BW data on esti-
mations of the genetic parameters of FCR and ways 
to improve the estimations. On the basis of the miss-
ing BW profile in French Large White pigs (male pigs 
weighed weekly, females and castrated males weighed 
monthly), we compared 2 different ways of predicting 
missing BW, 1 using a Gompertz model and 1 using a 
linear interpolation. For the first part of the study, we 
used 17,398 weekly records of BW and feed intake 
recorded over 16 consecutive weeks in 1,222 growing 
male pigs. We performed a simulation study on this data 
set to mimic missing BW values according to the pat-
tern of weekly proportions of incomplete BW data in 
females and castrated males. The FCR was then com-
puted for each week using observed data (obser_FCR), 
data with missing BW (miss_FCR), data with BW 
predicted using a Gompertz model (Gomp_FCR), and 
data with BW predicted by linear interpolation (interp_

FCR). Heritability (h2) was estimated, and the EBV was 
predicted for each repeated FCR using a random regres-
sion model. In the second part of the study, the full data 
set (males with their complete BW records, castrated 
males and females with missing BW) was analyzed 
using the same methods (miss_FCR, Gomp_FCR, and 
interp_FCR). Results of the simulation study showed 
that h2 were overestimated in the case of missing BW 
and that predicting BW using a linear interpolation pro-
vided a more accurate estimation of h2 and of EBV than 
a Gompertz model. Over 100 simulations, the correla-
tion between obser_EBV and interp_EBV, Gomp_EBV, 
and miss_EBV was 0.93  ± 0.02, 0.91 ± 0.01, and 
0.79  ± 0.04, respectively. The heritabilities obtained 
with the full data set were quite similar for miss_FCR, 
Gomp_FCR, and interp_FCR. In conclusion, when the 
proportion of missing BW is high, genetic parameters of 
FCR are not well estimated. In French Large White pigs, 
in the growing period extending from d 65 to 168, pre-
diction of missing BW using a Gompertz growth model 
slightly improved the estimations, but the linear interpo-
lation improved the estimation to a greater extent. This 
result is due to the linear rather than sigmoidal increase 
in BW over the study period.
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the development of automatic self-feeders and electronic 
identification, repeated measurements of FI and BW are 
available in many species, making it possible to analyze 
longitudinal FCR. Analysis of the individual profile of 
FCR over time can improve the genetic evaluation of 
this trait (Shirali et al., 2012). However, when FI is not 
recorded at the same time as BW, BW may be missing 
for substantial parts of the period to be analyzed. For in-
stance, in an experimental French Large White pig popu-
lation, male pigs are weighed every week during the 
growing period, whereas females and castrated males are 
weighed every month, meaning 60% of weekly BW are 
missing for the females and castrated males. Missing BW 
records can complicate the analysis of longitudinal FCR. 
Although mixed-effect regression models are supposed 
to be quite robust to missing data (Gibbons et al., 2010), 
estimation of variance components has proved to be er-
ratic when some records are missing (Nobre et al., 2003). 
Little is known about the impact of missing BW on the 
estimation of the genetic parameters for FCR. Therefore, 
on the basis of the missing BW pattern observed in the 
French Large White pig experiment, the objectives of 
this study were to evaluate whether missing BW records 
have an impact on the estimation of genetic parameters 
for FCR and if the use of a Gompertz model or linear 
interpolation to predict the missing BW can improve es-
timation of the genetic parameters for FCR.

MATERIAL AND METHODS

Data
For the current study, data were collected in accor-

dance with the national regulations of animal care in 
agriculture in France. Body weight records and FI of 
2,503 growing French Large White pigs (1,222 males, 
594 females, and 687 castrated males) were used in this 
study. This population is described in detail in Gilbert 
et al. (2007). Animal management was the following: 
animals born in a given farrowing batch were gathered 
at weaning (28 d of age) in the same postweaning unit. 
At 10 wk of age, 48 pigs were moved to a growing-fin-
ishing room with 4 pens per batch equipped with single-
place electronic feeders (ACEMA 64, Pontivy, France; 
Labroue et al., 1997)). Twelve animals of the same sex 
were allotted to each pen. Animals were provided with 
an ad libitum pelleted diet based on cereals and soybean 
meal containing 10 MJ NE/kg and 160 g CP/kg, with a 
minimum of 0.80 g digestible Lys/MJ NE. The BW and 
age at the beginning of the test averaged 24.9 ± 3.8 kg 
and 67 ± 1 d, respectively. The average BW and age at 
the end of the test were 115.3 ± 10.9 kg and 168 ± 13 d. 
The pigs were allowed to acclimate to the feeders for 

about a week, so the records of the first week of the test 
period were removed from the data set.

During the 16 consecutive weeks (from wk 2 to 17) 
of the test period, males were weighed weekly, and the 
majority of females and castrated males were weighed 
monthly. This resulted in a weekly proportion of missing 
BW of up to 60% in the females and castrated males in 
comparison with males, whose missing BW records were 
low (6%). The details of the available weekly BW of the 
females and castrated males are presented in Fig. 1. The 
individual FI of each animal was recorded automatically 
each time it used the feeder. Weekly averages of daily feed 
intake (WDFI) were then computed for each animal. The 
outlier values of WDFI and WDFI for which more than 2 
d of records were missing in a given week were removed 
from the analysis, as reported by David et al. (2015). The 
final data set comprised 16,301 weekly BW records and 
17,398 WDFI for the male pigs, 3,430 weekly BW re-
cords and 8,786 WDFI for the females, and 3,766 weekly 
BW records and 9,561 WDFI for the castrated males.

Analyses

Our aim was to measure the impact of missing BW 
records on estimations of the genetic parameters of FCR 
and to explore how to improve these estimations. To this 
end, we compared the estimations of genetic parameters 
and breeding values of FCR under 4 scenarios: FCR 
computed using complete observed BW and WDFI data 
(obser_FCR), FCR computed with missing BW data 
(miss_FCR), and FCR computed using missing BW re-
placed by predicted values obtained using a “by nearest” 
linear interpolation (interp_FCR) or using a Gompertz 
model (Gomp_FCR). For this purpose, we used the male 
data as the reference (very low proportion of missing BW 
records) and simulated randomly a pattern of missing val-
ues of BW on this data set by mimicking the same pattern 
of proportions of BW missing values per week as those 
observed in castrated males and females. For example, 
the full male data set contained 100% BW available for 
wk 5. After simulating the pattern of missing values, only 
6.8% remained available for further analyses.

The FCR was then calculated for each animal i 
and week j  as follows:

WDFI ,FCR
ADG

ij
ij

ij
=

where WDFIij is the WDFI of animal i in week j and 
ADGij is the ADG of animal i at week j ( j∈[ ]4 13, ) 
calculated over a 4-wk period as follows:

2 2

2 2

BW BW
ADG .

age age
ij ij

ij
ij ij

+ −

+ −

−
=

−
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The BW used in the last formula differed depend-
ing on the scenario. In the first scenario, (obser_FCR), 
BWij+2 and BWij-2 corresponded to the measured BW. 
In the second scenario, (miss_FCR), if BWij-2 or BWij+2 
was considered to be missing during the simulation of 
the missing data, then ADGij and hence miss_FCRij 
were not calculated but were considered missing. In 
the third scenario (interp_FCR), if BWij-2 was missing, 
then BWij-3 was used to compute ADGij. If BWij-3 was 
also missing, then BWij-1 was used to compute ADGij. 
If none were available, ADGij was considered missing. 
Similarly, missing BWij+2 were replaced primarily by 
BWij+3 and then by BWij+1 if BWij+3 was missing. If 
both were missing, then ADGij was considered miss-
ing. This method is equivalent to a linear interpolation 
except if BWij-1 or BWi,j+1 was used. In the following, 
the method is referred to as the by nearest linear inter-
polation. In the fourth scenario (Gomp_FCR), missing 
BW was predicted by a Gompertz model (Porter et al., 
2010; Cai et al., 2011). For this purpose, the Gompertz 
model was fitted to the data with missing BW records 
using the NLIN procedure of SAS (SAS 9.4; SAS Inst. 
Inc., Cary, NC). The Gompertz model is given by

BW A eij i
C ei

Bi j

= − −

* *

where Ai is the asymptotic or maximum growth re-
sponse (mature weight), Bi is the growth rate constant, 
and Ci is log(mature weight/birth weight). This model 
was fitted to each individual animal separately to esti-
mate individual parameters Ai, Bi, and Ci. Subsequently, 
ˆ ˆ, ,i iA B  and ˆ

iC  were used in the Gompertz formula to 

predict the missing BW. To reduce the effect of outliers 
and leverage points, BW was predicted from Gompertz 
model only when ˆ ˆ, ,i iA B  and ˆ

iC  were between the 1st 
and 99th percentiles of distribution of each parameter.

In the genetic analysis, FCRij less than 0 and 
greater than 6 were considered outliers and were dis-
carded from the analysis. The goal was to compare 
miss_EBV, interp_EBV, and Gomp_EBV obtained 
from miss_FCR, interp_FCR, and Gomp_FCR and 
see how they were correlated with obser_EBV of 
obser_FCR. To estimate the genetic parameters, a ran-
dom regression model using Legendre polynomials 
(RR-PL) was fitted to a repeated FCR. 

The RR-PL is given by

FCR a pij ij ik
k

m

kj ik
k

n

kj ij= + + +
= =
∑ ∑X b

1 1
ϕ ϕ ε

where FCRij is obser_FCR, miss_FCR, interp_FCR, or 
Gomp_FCR for individual i at week j; β is the vector 
of fixed effect; aik and pik are the kth random regression 
coefficients for genetic and permanent environmental ef-
fects for animal i, respectively, with ( )0,N ⊗a G A  and 

( )0,N ⊗p P I , where A is the known relationship ma-
trix, I is an identity matrix whose order is equal to the total 
number of individuals, G is the (co)variance matrix of the 
additive random regression coefficients, and P is the (co)
variance matrix of the random permanent environmental 
regression coefficients; kjϕ  is the (k − 1)th Legendre poly-
nomial in week j; and m and n are the orders of regres-
sion for the genetic and permanent environmental effects, 
respectively. The permanent effect reflects the nongenetic 
individual effects that are correlated across repetitions.

Figure 1. Proportion of BW available for females and castrated males per week from wk 2 (11 wk of age) to wk 17.

Downloaded from https://academic.oup.com/jas/article-abstract/95/1/39/4703065
by INRA (Institut National de la Recherche Agronomique) user
on 10 August 2018

30



Huynh Tran et al.42

The covariance components and genetic parameters 
were estimated using the REML approach with ASReml 
software (Gilmour et al., 2009). All the fixed effects and 
1-way interaction of biological relevance included in the 
model were selected beforehand in a stepwise manner us-
ing nested models that were compared with a likelihood 
ratio test. The fixed effects retained in the models were 
the week of observation (10 levels), the pen (96 levels), 
the batch (32 levels), the age, and BW of the animal at 
the beginning of the test. Likelihood ratio tests were used 
to choose the best polynomial orders for genetic and per-
manent environmental effects on the animal. Legendre 
polynomials of orders 3 and 2 were retained to model 
the genetic and permanent environmental effects, respec-
tively. Heritability was computed for each week j as the 
ratio of the genetic to the total variance:

2

2 1

2 2 2

1 1

,

m

kj kk
k

j m n

kj kk kj kk
k k

h
ε

ϕ

ϕ ϕ σ

=

= =

=
+ +

∑

∑ ∑

G

G P

where 2
εσ is the residual variance. Standard errors of 

estimates of genetic parameters were computed in 
ASReml using the method proposed by Fischer et al. 
(2004). Pearson correlations were used to compare 
the breeding values (EBV) for the different FCR: 
obser_EBV, miss_EBV, Gomp_EBV, and interp_EBV. 
The simulation of missing BW and the genetic analy-
sis of each FCR were repeated 100 times. The mean 
and SD of the correlation coefficients and heritability 
of the 100 simulations were computed.

In the second step of the analysis, we estimated 
the genetic parameters and EBV for the full data set 
(males, females, and castrated males, 32,552 BW re-
cords) that “naturally” contained missing BW. For this 
data set, 3 FCR were computed for each animal and 
week, miss_FCR, Gomp_FCR, and interp_FCR, using 
the methods described above. As the full data set natu-
rally contained missing values, the previous miss_FCR 
also corresponded to observed data. As described for 
the simulations, the EBV and heritability were esti-

mated using the RR-PL model. Gender was added to 
the models as a fixed effect. The correlation between 
Gomp_EBV, miss_EBV, or interp_EBV and the herita-
bility of Gomp_FCR, miss_FCR, and interp_FCR were 
estimated as described above for the simulation study.

RESULTS

Simulation
A detailed description of missing BW data and re-

sulting FCR in the 4 scenarios are given in Table 1. In the 
initial data set, 11,790 observations of WDFI over the 10-
wk period (wk 4 to 13) were available to calculate FCR. 
The proportion of missing BW over the 14-wk period 
(wk 2 to 15) used to calculate FCR varied depending on 
the scenario; the proportion was low in the observed sce-
nario (5.8%), slightly higher in the Gompertz scenario 
(7.3%), and very high in the missing scenario (61.5%). 
The percentage of missing BW in the scenario corrected 
using the by nearest linear interpolation was the same as 
in the missing scenario since BW is not replaced with 
this approach. A huge proportion (77.2%) of FCR was 
missing in the missing scenario. Correction using the 
by nearest linear interpolation scenario greatly reduced 
the proportion of missing FCR (median of 24.8%), but 
it remained higher than for the observed data (12.5%). 
Finally, the Gompertz scenario had the lowest percentage 
of missing FCR (median of 8.8%). It should be noted that 
missing Gomp_FCR values were due to extreme values 
of ˆ ˆ, ,A B and Ĉ or to outlier values of Gomp_FCR.

The genetic variances and genetic correlations 
across the 10 consecutive weeks obtained with the 
RR-PL model in the different scenarios are list-
ed in Table  2. The genetic variances obtained with 
obser_FCR, interp_FCR, and Gomp_FCR were quite 
similar, ranging from 0.01 to 0.09 for obser_FCR, from 
0.02 to 0.09 for Gomp_FCR, and from 0.01 to 0.08 for 
interp_FCR, depending on the week. Higher genet-
ic variances were obtained in the first week (0.04 for 
obser_FCR and Gomp_FCR, 0.05 for interp_FCR) and 

Table 1. Percentage of missing BW and missing feed conversion ratios (FCR) in the simulation study (median 
across 100 simulation replicates) depending on the scenario

 
Item

Scenario1

Observed Missing Interpolation Gompertz
Missing BW,2 % 5.8 61.5

[60.8–62.1]
7.3

[6.6–7.7]
Missing FCR,3 % 12.5 77.2

[76.1–78.2]
24.8

[24.1–25.9]
8.8

[7.5– 9.6]

1Observed = available data; missing = data with a simulated pattern of missing BW; interpolation = ADG calculated using the by nearest interpolation; 
Gompertz = missing BW predicted using a Gompertz model. The numbers in brackets show the minium to the maximum.

2Percentage of missing BW over a period of 14 wk (from wk 2 to 15).
3Percentage of missing FCR over a period of 10 wk (from wk 4 to 13).
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in the last 2 wk (0.04 to 0.09 for obser_FCR, 0.07 to 
0.09 for Gomp_FCR, and 0.06 to 0.08 for interp_FCR) 
of the test period in comparison with the middle of the 
growing period (wk 5 to 10, ranging from 0.01 to 0.03). 
Except for wk 4 and 8, the genetic variances obtained 

for miss_FCR were generally higher (ranging from 0.06 
to 0.23) than those obtained in the other scenarios. The 
same comparison between scenarios and the same pat-
tern of changes in variance over time were observed for 
the permanent environmental effect (result not shown).

Table 2. Mean and SD over 100 simulations of the additive genetic variance (on the diagonal) and genetic cor-
relations (above the diagonal) of FCR over the 10-wk period in the different scenarios
Week 4 5 6 7 8 9 10 11 12 13
obser_FCR1

4 0.04 0.89 0.70 0.48 0.14 −0.24 −0.48 −0.58 −0.56 −0.40
5 0.03 0.94 0.79 0.44 −0.06 −0.39 −0.51 −0.43 −0.19
6 0.03 0.94 0.67 0.18 −0.18 −0.33 −0.27 −0.06
7 0.03 0.88 0.13 0.13 −0.05 −0.07 0.04
8 0.02 0.84 0.57 0.37 0.23 0.13
9 0.01 0.92 0.76 0.54 0.25
10 0.01 0.95 0.75 0.41
11 0.03 0.91 0.64
12 0.04 0.89
13 0.09
miss_FCR1

4 0.03 ± 0.01 0.26 ± 0.16 0.04 ± 0.15 −0.12 ± 0.12 −0.35 ± 0.08 −0.23 ± 0.14 −0.18 ± 0.14 −0.21 ± 0.14 −0.37 ± 0.11 −0.44 ± 0.17
5 0.10 ± 0.03 0.97 ± 0.02 0.85 ± 0.06 0.03 ± 0.15 −0.75 ± 0.09 −0.87 ± 0.05 −0.90 ± 0.04 −0.77 ± 0.08 0.31 ± 0.24
6 0.13 ± 0.04 0.95 ± 0.02 0.21 ± 0.14 −0.65 ± 0.12 −0.81 ± 0.08 −0.84 ± 0.06 −0.69 ± 0.09 0.39 ± 0.21
7 0.06 ± 0.02 0.49 ± 0.11 −0.40 ± 0.17 −0.60 ± 0.14 −0.66 ± 0.11 −0.54 ± 0.11 0.37 ± 0.20
8 0.02 ± 0.002 0.59 ± 0.13 0.37 ± 0.15 0.29 ± 0.15 0.23 ± 0.12 −0.01 ± 0.16
9 0.09 ± 0.02 0.97 ± 0.01 0.93 ± 0.02 0.76 ± 0.06 −0.32 ± 0.20
10 0.20 ± 0.06 0.99 ± 0.002 0.83 ± 0.05 −0.32 ± 0.21
11 0.23 ± 0.06 0.90 ± 0.03 −0.21 ± 0.22
12 0.13 ± 0.02 0.21 ± 0.19
13 0.20 ± 0.07
Gomp_FCR1

4 0.04 ± 0.01 0.62 ± 0.06 0.26 ± 0.01 0.10 ± 0.10 0.00 ± 0.10 −0.06 ± 0.07 −0.10 ± 0.07 −0.18 ± 0.07 −0.35 ± 0.08 −0.57 ± 0.09
5 0.03 ± 0.002 0.91 ± 0.02 0.78 ± 0.04 0.44 ± 0.08 −0.19 ± 0.07 −0.50 ± 0.05 −0.61 ± 0.04 −0.63 ± 0.05 −0.45 ± 0.08
6 0.03 ± 0.002 0.96 ± 0.01 0.64 ± 0.06 −0.09 ± 0.07 −0.47 ± 0.05 −0.58 ± 0.04 −0.54 ± 0.05 −0.24 ± 0.08
7 0.02 ± 0.002 0.83 ± 0.03 0.16 ± 0.06 −0.24 ± 0.06 −0.37 ± 0.06 −0.34 ± 0.07 −0.08 ± 0.09
8 0.01 ± 0.002 0.69 ± 0.04 0.34 ± 0.08 0.19 ± 0.09 0.15 ± 0.10 −0.18 ± 0.11
9 0.02 ± 0.002 0.91 ± 0.02 0.82 ± 0.04 0.71 ± 0.06 0.43 ± 0.10
10 0.03 ± 0.002 0.98 ± 0.01 0.87 ± 0.03 0.52 ± 0.18
11 0.05 ± 0.01 0.95 ± 0.01 0.64 ± 0.06
12 0.07 ± 0.01 0.84 ± 0.03
13 0.09 ± 0.01
interp_FCR1

4 0.05 ± 0.01 0.93 ± 0.02 0.80 ± 0.05 0.63 ± 0.07 0.36 ± 0.09 0.05 ± 0.10 −0.19 ± 0.10 −0.39 ± 0.09 −0.57 ± 0.09 −0.68 ± 0.11
5 0.03 ± 0.002 0.95 ± 0.01 0.81 ± 0.04 0.49 ± 0.09 0.08 ± 0.10 −0.23 ± 0.09 −0.44 ± 0.07 −0.60 ± 0.06 −0.65 ± 0.12
6 0.02 ± 0.002 0.93 ± 0.02 0.66 ± 0.07 0.24 ± 0.11 −0.09 ± 0.11 −0.33 ± 0.09 −0.49 ± 0.08 −0.54 ± 0.13
7 0.02 ± 0.002 0.87 ± 0.03 0.55 ± 0.09 −0.23 ± 0.12 −0.02 ± 0.12 −0.23 ± 0.10 −0.38 ± 0.13
8 0.01 ± 0.002 0.88 ± 0.03 0.66 ± 0.08 0.44 ± 0.10 0.18 ± 0.10 −0.10 ± 0.11
9 0.02 ± 0.002 0.94 ± 0.02 0.79 ± 0.05 0.56 ± 0.09 0.21 ± 0.12
10 0.03 ± 0.01 0.95 ± 0.01 0.78 ± 0.06 0.45 ± 0.12
11 0.04 ± 0.01 0.93 ± 0.02 0.68 ± 0.08
12 0.06 ± 0.01 0.89 ± 0.03
13 0.08 ± 0.02

1Here obser_FCR = feed conversion ratio (FCR) computed using available data; miss_FCR = FCR computed using data with a simulated pattern of 
missing BW; interp_FCR = FCR computed using ADG calculated with the by nearest interpolation; Gomp_FCR = FCR computed using missing BW 
predicted by a Gompertz model.

2SD < 0.00.
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The genetic correlations varied depending on the 
length of the interval between measurements. They 
ranged from −0.58 to 0.95 for obser_FCR, from −0.90 to 
0.99 for miss_FCR, from −0.63 to 0.98 for Gomp_FCR, 
and from −0.68 to 0.95 for interp_FCR (Table  2). 
The 1-wk interval correlations were generally high. 
They were higher than 0.84 for interp_FCR and ob-
ser_FCR and ranged from 0.62 to 0.98 for Gomp_FCR. 
Nonetheless, low genetic correlations between FCR 
measured in 2 successive weeks were sometimes ob-
tained for miss_FCR (0.26 between wk 4 and 5, 0.21 be-
tween wk 12 and 13) but with high SD. In general, the 
pattern of changes in the genetic correlations with the 
length of the interval between measurements was simi-
lar for obser_FCR, Gomp_FCR, and interp_FCR. The 
genetic correlation was highly positive for short time 
intervals, tended to decrease with the length of the inter-
val, and became negative, resulting in an opposite cor-
relation when the interval between the 2 measurement 
weeks was more than 4 to 5 wk. The genetic correlations 
for miss_FCR followed a similar pattern with lower ge-
netic correlations for some of the short time intervals and 
strong negative correlation for others (−0.90 between wk 
5 and 11). For 2 given weeks, the SD of the genetic cor-
relation coefficients of miss_FCR was higher than those 
of Gomp_FCR and interp_FCR. Among interp_FCR 
and Gomp_FCR, the SD of correlation coefficients of 
interp_FCR was higher than those of Gomp_FCR from 
wk 9 to 13. The same patterns of correlation were ob-

served for the permanent environmental effect (result 
not shown). We also observed that the means of residual 
variance of interp_FCR and obser_FCR were compara-
ble (0.12, 0.12) and higher than the residual variance of 
miss_FCR (0.10) and double that of Gomp_FCR (0.06).

In the simulation study, changes in heritability 
over time for obser_FCR, miss_FCR, interp_FCR, and 
Gomp_FCR are illustrated in Fig. 2. The pattern of heri-
tability over time was quite similar for interp_FCR and 
obser_FCR. Heritabilities obtained for Gomp_FCR fol-
lowed a similar pattern, but estimates were generally 
higher, except for wk 4, 5, 8, and 13. The 3 curves (heri-
tabilities of obser_FCR, interp_FCR, and Gomp_FCR) 
tended to decrease up to wk 8 and then to increase and 
reach a maximum value in wk 13. Compared to herita-
bility of obser_FCR, the heritability of interp_FCR was 
slightly higher in wk 9, 10, and 11. On the other hand, the 
heritability estimates obtained for miss_FCR were higher 
than those obtained with the other scenarios at all time 
points (except week 4) and reached very high values. 
The SD of the heritabilities across simulations was much 
larger for miss_FCR than for Gomp_FCR or interp_FCR.

The mean and SD of correlations among the EBV 
in the different scenarios with 100 simulations are pre-
sented in Table 3. The correlations between obser_EBV 
and the other EBV were significantly different from 
1. We observed a higher average correlation between 
obser_EBV and interp_EBV (0.93) than between 
obser_EBV and Gomp_EBV (0.91) and between 

Figure 2. Changes in heritability of feed conversion ratio (FCR) over time in the different missing data scenarios. The shaded area delimits the 2.5 and 
97.5 percentiles (100 iterations). Here obser_FCR = FCR computed using available data; miss_FCR = FCR computed using data with a simulated pattern 
of missing BW; interp_FCR = FCR computed using ADG calculated with the by nearest interpolation; Gomp_FCR = FCR computed using missing BW 
predicted by a Gompertz model.
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obser_EBV and miss_EBV (0.79). The correlation of 
obser_EBV with other predictions varied depending 
on the week from 0.39 to 0.86 for miss_EBV, from 
0.71 to 0.93 for Gomp_EBV, and from 0.79 to 0.90 for 
interp_EBV. The lowest correlation between EBV was 
observed in wk 6 in all cases. The correlations between 
obser_EBV and EBV obtained in the other scenarios 
were generally the highest in wk 4, 8, and 12.

Full Data Set

The percentage of missing BW in the full data set 
was 34%, leading to 41.6% missing FCR. Correction 
using the by nearest interpolation reduced this percent-
age to 9% and to 0.3% using the Gompertz model to 
predict missing BW. The genetic variances and corre-
lations obtained for the full data set (results not shown) 
were in the same range as those obtained for only males 
(obser_FCR in the simulation study). The heritabilities of 
miss_FCR, Gomp_FCR, and interp_FCR using the full 
data set are listed in Table 4. The patterns of heritabil-
ity over time were similar in the 3 scenarios. Heritability 
decreased until wk 8 or 9 and increased again until the 
end of the test. These values ranged from 0.14 to 0.34 
(miss_FCR), 0.15 to 0.35 (interp_FCR), and 0.17 to 0.35 
(Gomp_FCR), which are higher than those obtained for 
only males (observed FCR in the simulation study). The 
heritabilities of Gomp_FCR were slightly higher than 
those of obser_FCR and miss_FCR from wk 5 to 7. In 
general, the SE were similar for miss_FCR, interp_FCR, 
and Gomp_FCR. The correlations between EBV ob-
tained for the different FCR with the full data set are list-

ed in Table 5. The correlations for all the weeks between 
EBV were high (>0.96). Within weeks, the correlations 
between EBV were lower but always higher than 0.87.

DISCUSSION

The purpose of this study was to evaluate the im-
pact of missing BW values on the estimation of genetic 
parameters of longitudinal FCR and to evaluate tech-
niques to improve these estimations. In our experimen-
tal pig population, the BW of females and castrated 
males was recorded only monthly, which complicated 
the estimation of genetic parameters for weekly FCR. 
In the current study, we predicted the missing BW to 
improve the genetic evaluation for FCR. Two meth-
ods were tested. The first uses a growth curve model. 
Several growth models (von Bertalanffy, Richards, lo-
gistic, etc.) are proposed in the literature (e.g., Strathe 
et al., 2010; Coyne et al., 2015), among which we chose 
the Gompertz model. This growth model has been 
widely used to study growth curves in pigs (Koivula et 
al., 2008; Strathe et al., 2010; Cai et al., 2011; Coyne 
et al., 2015) and in other species (Narinc et al., 2010; 
Podisi et al., 2013; Goldberg and Ravagnolo, 2015). It 
is reported to be a suitable approach for data extrapola-
tion (Koivula et al., 2008; Coyne et al., 2015) and re-
quires fewer parameters to obtain the equivalent data 
fit than corresponding linear models (Archontoulis 
and Miguez, 2015). Using the Gompertz model to fit 
the BW over time, we assumed that the pigs developed 
normally and that their growth followed the classical 
sigmoidal curve. The second method we tested is a less 
elaborate approach to predict missing BW. If ADG for 
week j could not be computed due to missing BW val-
ues at week j + 2 or j – 2, then we used the nearest avail-
able BW in the adjacent weeks and modified the time 

Table 3. Pearson correlation ± SD between the EBV 
obtained for obser_FCR and those obtained for 
miss_FCR, Gomp_FCR, and interp_FCR in the simula-
tion study of missing BW (100 replicates)
 
Week

obser_FCR,
miss_FCR1

obser_FCR,
Gomp_FCR1

obser_FCR,
interp_FCR1

4 0.86 ± 0.02 0.86 ± 0.01 0.86 ± 0.01
5 0.49 ± 0.02 0.78 ± 0.02 0.81 ± 0.02
6 0.39 ± 0.02 0.71 ± 0.03 0.79 ± 0.02
7 0.57 ± 0.03 0.80 ± 0.02 0.84 ± 0.02
8 0.85 ± 0.04 0.93 ± 0.01 0.90 ± 0.02
9 0.76 ± 0.04 0.91 ± 0.01 0.90 ± 0.02
10 0.68 ± 0.04 0.83 ± 0.02 0.87 ± 0.02
11 0.69 ± 0.03 0.81 ± 0.02 0.86 ± 0.01
12 0.77 ± 0.02 0.85 ± 0.01 0.88 ± 0.01
13 0.63 ± 0.03 0.84 ± 0.02 0.83 ± 0.02
All weeks 0.79 ± 0.04 0.91 ± 0.01 0.93 ± 0.01

1Here obser_FCR = feed conversion ratio (FCR) computed using avail-
able data; miss_FCR = FCR computed using data with a simulated pattern 
of missing BW; interp_FCR = FCR computed using ADG calculated with 
the by nearest interpolation; Gomp_FCR = FCR computed using missing 
BW predicted by a Gompertz model.

Table 4. Heritability over time (10 wk) for the full data 
set using miss_FCR, Gomp_FCR, and interp_FCR
 
Week

miss_FCR1  
(h2 ± SE)

Gomp_FCR1  
(h2 ± SE)

interp_FCR1  
(h2 ± SE)

4 0.33 ± 0.04 0.33 ± 0.04 0.34 ± 0.04
5 0.30 ± 0.03 0.35 ± 0.03 0.31 ± 0.03
6 0.26 ± 0.03 0.33 ± 0.03 0.25 ± 0.03
7 0.21 ± 0.02 0.25 ± 0.02 0.19 ± 0.02
8 0.16 ± 0.02 0.17 ± 0.02 0.15 ± 0.02
9 0.14 ± 0.02 0.16 ± 0.02 0.17 ± 0.02
10 0.15 ± 0.03 0.20 ± 0.03 0.20 ± 0.03
11 0.18 ± 0.03 0.23 ± 0.03 0.21 ± 0.03
12 0.24 ± 0.04 0.23 ± 0.03 0.24 ± 0.04
13 0.34 ± 0.05 0.31 ± 0.04 0.35 ± 0.05

1Here miss_FCR = feed conversion ratio (FCR) computed using ob-
served data with missing BW; interp_FCR = FCR computed using ADG 
calculated with the by nearest interpolation; Gomp_FCR = FCR computed 
using missing BW predicted by a Gompertz model.
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interval accordingly to calculate ADG. This is equiva-
lent to a linear interpolation of BW using the 2 nearest 
BW records, which leads to changes in ladder steps of 
ADG over time. A slightly different option would have 
been to perform a “real” linear interpolation of BW be-
fore computing ADG (Zumbach et al., 2010).

We used a RR-PL model to study the repeated 
measurements of FCR. Different approaches are avail-
able to account for the correlation between successive 
measurements for the estimation of genetic parameters 
(character process model, spline model, structured an-
tedependence model; Jaffrézic et al., 2003; Jaffrézic, 
2004; Borquis et al., 2013; Xie and Zimmerman, 2013). 
However, the RR-PL model is one of the most fre-
quently used approaches in longitudinal genetic stud-
ies thanks to its ease of use and speed of convergence 
(Speidel et al., 2010). Such models have, for instance, 
been widely used for growth traits in pigs (Zumbach 
et al., 2010), for milk production in cattle and goats 
(Silva et al., 2013), for egg production in poultry (Wolc 
and Szwaczkowski, 2009), for volume of ejaculate in 
Holstein bulls (Carabaño et al., 2007), and for carcass 
traits in beef cattle (Englishby et al., 2016).

The moderate heritability obtained for the observed 
records (obser_FCR) in male pigs is in line with esti-
mates obtained in a previous study in the same popula-
tion (0.24; Saintilan et al., 2012). The higher heritability 
values obtained for the full data set (males + females + 
castrated males) are in line with the higher value of 
heritability in castrated males than in males reported by 
Saintilan et al. (2012) for FCR (0.41 vs. 0.24). In accor-
dance with the conclusions of these authors, we assumed 
that FCR corresponded to the same trait in the 3 genders. 
For obser_FCR, Gomp_FCR, and interp_FCR, we ob-

served the same pattern of heritability over time, which 
tended to be higher at the beginning and at the end of the 
test period. This trend could be due to the “border effect” 
problem previously reported for RR models (i.e., an in-
crease in variance at the borders of the test space; Sesana 
et al., 2010; Wolc et al., 2011; David et al., 2015).

Generally, our results show that the genetic cor-
relations estimated between adjacent weeks were 
high. They decreased with an increase in the interval 
between weeks and reached high negative values for 
weeks separated by a longer period, which is unlikely 
to reflect the true correlations between these long pe-
riods. This pattern may reflect a compensatory growth 
phenomenon (Fabian et al., 2004; Kamalakar et al., 
2009). Nonetheless, the phenomenon is generally 
observed when the animals’ feed is restricted at the 
beginning of the measurement period, which was not 
the case in our study. Another possible explanation is 
that RR-PL models provided biased estimates of the 
correlations, and in fact, RR-PL models cannot han-
dle a correlation pattern that decreases asymptotically 
to zero (Jaffrézic et al., 2004). In that case, the cor-
relations become negative and subsequently increase 
again (David et al., 2015), as observed in our case.

In the simulation study, the heritabilities of FCR 
obtained with a missing-values pattern (miss_FCR) 
were very different from those obtained with the other 
FCR (for most weeks the 95% quantile for the herita-
bilities of miss_FCR and obser_FCR did not overlap), 
indicating that a high proportion of missing values 
leads to an overestimation of the genetic parameters. 
This was related to a combination of decreased resid-
ual variance and increased genetic variance compared 
to interp_FCR and obser_FCR. In addition, the SD of 
the heritability of miss_FCR was much higher than 
that of obser_FCR, Gomp_FCR, and interp_FCR, cer-
tainly because of the less accurate available measure-
ments. Finally, the EBV estimated for miss_FCR were 
quite different from those of obser_FCR.

Accurate prediction of the missing BW is thus nec-
essary to obtain accurate estimations and predictions 
for selection. Results of the simulation study showed 
that the by nearest linear interpolation provided better 
estimates of heritabilities and EBV (obser_FCR cor-
responding to the “true” heritabilities and EBV) than 
the prediction of missing BW using a Gompertz model, 
which tended to overestimate them. This result is prob-
ably explained by the fact that in the growth period in 
our particular data set, the increase in BW over time 
was quasi-linear and not sigmoidal, as assumed in the 
Gompertz model (Porter et al., 2010). The Gompertz 
model was therefore not the most appropriate model to 
fit the missing BW during the period of measurements. 
Compared to the nearest approach, the Gompertz model 

Table 5. Pearson correlations between the EBV obtained 
for the full data set using miss_FCR, Gomp_FCR, and 
interp_FCR
 
Week

interp_FCR, 
Gomp_FCR1

miss_FCR,
Gomp_FCR1

miss_FCR,
interp_FCR1

4 0.92 0.93 0.96
5 0.89 0.89 0.94
6 0.90 0.90 0.93
7 0.92 0.92 0.93
8 0.96 0.95 0.93
9 0.96 0.93 0.92
10 0.93 0.90 0.92
11 0.93 0.91 0.93
12 0.95 0.95 0.93
13 0.92 0.91 0.87
All weeks 0.96 0.94 0.97

1Here miss_FCR = feed conversion ratio (FCR) computed using ob-
served data with missing BW; interp_FCR = FCR computed using ADG 
calculated with the by nearest interpolation; Gomp_FCR = FCR computed 
using missing BW predicted by a Gompertz model.
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has been cited as a reference to provide a good evalu-
ation of individual growth dynamics (Koivula et al., 
2008), suggesting that selection of growth curve pa-
rameters can be envisaged. The purpose of our study 
was different: The growth curve was used as a means to 
predict missing BW and to use the missing data together 
with the original available BW in the genetic analysis. 
We thus conclude that because it smooths individual 
variability, the Gompertz model is not appropriate in 
this situation. However, it should be noted that for a 
longer test period (i.e., including the sigmoidal portion 
of the growth curve) or when larger proportions of BW 
are missing in a data set, leading to high proportions of 
missing FCR with the by nearest linear interpolation, 
the use of Gompertz models could be appropriate.

The highest correlations between EBV were ob-
tained for wk 4, 8, and 12 because the proportion of 
missing BW was low in wk 2, 6, 10, and 14, which 
were used to compute FCR for wk 4, 8, and 12 (the 
proportions of missing FCR in these weeks were 
lower: 29%, 26%, and 22%, respectively). It should 
be noted that the heritabilities obtained for the differ-
ent FCR were also the closest for these weeks for the 
same reason. This explains the dips observed in the 
heritability of miss_FCR in wk 4, 8, and 12.

The proportion of missing FCR in the full data set 
was 41.6%, which was reduced to 9% with the by nearest 
linear interpolation and to 0.3% with the Gompertz ap-
proach. In the latter, the proportion of missing FCR was 
negligible because prior to our study, animals for which 
the Gompertz model showed convergence problems 
were removed from the analysis. Thus, the proportion of 
missing Gomp_FCR in the full data set corresponded to 
only the proportion of FCR values <0 or >6. In contrast 
to the results with the simulated data, the heritabilities 
obtained with the full data set with miss_FCR were not 
much larger than those obtained for Gomp_FCR or in-
terp_FCR. This might be due to the overall lower pro-
portion of missing FCR and, particularly, the absence of 
weeks with more than 95% of missing values. In fact, the 
highest proportion of missing FCR values per week was 
59% for the full data set, meaning there was sufficient 
information per week to estimate the parameters of the 
RR-PL model. Nonetheless, for the sake of simplicity, 
we assumed the same changes in FCR and heritability 
over time for the 3 genders in our RR-PL model. These 
assumptions are questionable. Changes in FCR and heri-
tabilities over time that differ between genders may be 
more realistic: A genetic correlation close to 1 was esti-
mated by Saintilan et al. (2012) between genders at the 
test level, but growth dynamics could differ between gen-
ders. In that case, the effect on heritability and EBV es-
timates of missing BW records in a given gender would 
probably be larger and in the range of those obtained in 

the simulated study. In such a situation, the prediction of 
missing BW to calculate weekly FCR is very useful to 
obtain accurate longitudinal estimates of FCR.

Conclusion

This study showed that 61.5% of missing BW led 
to a major overestimation in heritability and EBV for 
longitudinal FCR. Using the Gompertz model to pre-
dict the BW reduced this phenomenon. However, in 
growth periods with a quasi-linear increase in BW 
over time, the by nearest approach provided better es-
timations of genetic parameters.
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2.3. Evaluating the impact of the missing BW with a simple repeatability 

model 

In addition to the results presented in article I, we also investigated if missing BW records have 

an impact on the EBV estimation for FCR when a simple repeatability model is used. The 

heritability for FCR (mean ± SE) obtained with the simple repeatability model applied to the 

full longitudinal dataset was 0.05 ± 0.01, which is lower than those reported in the literature for 

FCR recorded on the test period (Saintilan et al., 2013; Gilbert et al., 2017), and lower than 

those of the RR models reported in above paper (Huynh-Tran et al., 2017). 

Using the same dataset, approach and notations as in article I, the results obtained for the simple 

repeatability model are the following: On simulations, the mean of heritability estimates (± SE) 

over 100 simulation were: 0.05 ± 0.01, 0.05 ± 0.01 and 0.05 ± 0.02 for Gomp_FCR, inter_FCR 

and miss_FCR, respectively. The correlations between EBV using Gomp_FCR and interp_FCR 

with obser_EBV were the same (0.96 ± 0.01), whereas the correlation between EBV from 

miss_FCR and obser_FCR was lower (0.89 ± 0.02). On the complete data, the correlation 

between EBV obtained for Gomp_FCR and miss_FCR was also equal to that of EBV with 

inter_FCR and miss_FCR (0.97 for both of them). This suggested that the missing BW also had 

an impact on EBV predictions when a simple repeatability model is used. However, in the case 

of the simple repeatability model the quasi-linear interpolation was equivalent to the Gompertz 

model for improving the prediction, which was not the case with random regression results. 
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2.4. Conclusion 

This study showed that: 

• When the proportion of missing BW is high, the genetic parameters of FCR are not well 

estimated. 

• With the random regression model, prediction of missing BW using a Gompertz growth 

model slightly improved the EBV prediction but the quasi-linear interpolation was 

much better in our dataset where the trend is linear rather than sigmoidal. 

• With a simple repeatability model, predicting missing BW using a quasi-linear interpo-

lation or a Gompertz model led to the same improvement in EBV prediction for FCR. 
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Chapter 3 - LONGITUDINAL FEED CONVERSION RATIO 

ANALYSES 
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3.1. About feed conversion ratio in pigs  

Although feed conversion ratio is widely used in pig breeding programs and repeated 

measurements of FCR are sometimes available, few study undertook the genetic evaluation of 

longitudinal FCR. Our goal was to compare different approaches for longitudinal analyses, with 

application to FCR.   

To reach this goal, we used the data of the 1186 male pigs whose proportion of missing weekly 

BW (thus FCR) was low (see previous chapter). Means and standard deviations of FCR per 

week are decribed in Fig 3.1. Different models that can handle changes of the covariance 

structures for FCR over time were compared: the structured antedependence model (SAD) and 

the random regression model using Legendre orthogonal polynomial (RR-OP) in the published 

paper, and the random regression models using spline functions (RR-SL) as a complementary 

model to evaluate its potential to better handle border effects in the complementary results 

presented after the paper. The fit-to-the-data, the predictive ability and the genetic parameter 

estimates of the different models were compared. Finally, because multiple EBV are difficult 

to handle to take selection decisions, we proposed in the paper a criterion for animal selection 

based on the longitudinal EBV .  

This chapter is organized in the following order :  

• Comparison of the RR-OP and SAD models on longitudinal FCR (article II) 

• Evaluation of a criterion to select from longitudinal EBV (article II) 

• Additional results related to the RR-SL model 

• Comparison of the predictive ability of the different models 

 

Figure 3.1. Mean and standard deviations of feed conversion ratio over 10 weeks for male 

pigs. 
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3.2. Article II: Genetic structured antedependence model and random 

regression model using orthogonal polynomials for feed conversion ratio in 

growing Large White pigs 

(Article II: Huynh-Tran, V. H., H. Gilbert, and I. David. 2017. Genetic structured 

antedependence and random regression models applied to the longitudinal feed conversion ratio 

in growing Large White pigs. J. Anim. Sci. 95:4752–4763. doi:10.2527/jas2017.1864.) 
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INTRODUCTION

Feed efficiency is a benchmark for profitability in 
pig farming because the cost of feed represents about 
two-thirds of total production costs. It also reduces 
the negative effects of livestock farming on the envi-
ronment (Patience et al., 2015; Gilbert et al., 2017). 
With the development of automatic equipment, indi-
vidual feed intake (FI) and BW values can be repeat-
edly measured during the production period in some 
species. The analysis of repeated records can provide 
more accurate estimations in a genetic selection con-
text than simple trait analyses (Boligon et al., 2011). 
To analyze such longitudinal data, genetic models 

Genetic structured antedependence and random regression models  
applied to the longitudinal feed conversion ratio in growing Large White pigs1

V. H. Huynh-Tran,2 H. Gilbert, and I. David

GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet-Tolosan cedex, France

ABSTRACT: The objective of the present study 
was to compare a random regression model, usually 
used in genetic analyses of longitudinal data, with the 
structured antedependence (SAD) model to study the 
longitudinal feed conversion ratio (FCR) in growing 
Large White pigs and to propose criteria for animal 
selection when used for genetic evaluation. The study 
was based on data from 11,790 weekly FCR measures 
collected on 1,186 Large White male growing pigs. 
Random regression (RR) using orthogonal polynomial 
Legendre and SAD models was used to estimate genet-
ic parameters and predict FCR-based EBV for each of 
the 10 wk of the test. The results demonstrated that the 
best SAD model (1 order of antedependence of degree 
2 and a polynomial of degree 2 for the innovation 
variance for the genetic and permanent environmental 
effects, i.e., 12 parameters) provided a better fit for the 
data than RR with a quadratic function for the genetic 
and permanent environmental effects (13 parameters), 
with Bayesian information criteria values of −10,060 
and −9,838, respectively. Heritabilities with the SAD 

model were higher than those of RR over the first 7 wk 
of the test. Genetic correlations between weeks were 
higher than 0.68 for short intervals between weeks 
and decreased to 0.08 for the SAD model and −0.39 
for RR for the longest intervals. These differences in 
genetic parameters showed that, contrary to the RR 
approach, the SAD model does not suffer from border 
effect problems and can handle genetic correlations 
that tend to 0. Summarized breeding values were pro-
posed for each approach as linear combinations of the 
individual weekly EBV weighted by the coefficients 
of the first or second eigenvector computed from 
the genetic covariance matrix of the additive genetic 
effects. These summarized breeding values isolated 
EBV trajectories over time, capturing either the aver-
age general value or the slope of the trajectory. Finally, 
applying the SAD model over a reduced period of 
time suggested that similar selection choices would 
result from the use of the records from the first 8 wk of 
the test. To conclude, the SAD model performed well 
for the genetic evaluation of longitudinal phenotypes.
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should account for the covariance structures of the re-
peated records with few parameters to estimate. The 
random regression (RR) model is widely used, even if 
it presents various drawbacks such as higher variances 
at the beginning and the end of the studied period, so-
called border effect problems (Jaffrézic et al., 2004; 
Meyer, 2005). The structured antedependence (SAD) 
model also deals with the correlation structure of data 
and has been shown to better fit covariance structures 
than RR models (Jaffrézic and Pletcher, 2000; Jaffrézic 
et al., 2004; David et al., 2015). Up to now, it has been 
less widely used than the RR model due to the lack 
of tools; however, user-friendly software (David et 
al., 2017) is now freely available (https://zenodo.org/
record/896377; accessed 20 Sep. 2017). For selection 
purposes, an interpretable eigenvalue decomposition 
of the additive genetic matrix K of the RR coefficients 
of the RR model has been proposed to summarize the 
individual genetic potential over time as 1 or 2 values 
(Van Der Werf et al., 1998), capturing features such 
as persistency or area under the curve when applied 
to lactation curves (Togashi and Lin, 2006). To our 
knowledge, no methods for summarizing breeding 
values from the SAD model have yet been proposed. 
The objective of our study was to compare RR and 
SAD models for the genetic analysis of repeated mea-
sures of the feed conversion ratio (FCR) in growing 
pigs and to propose criteria for animal selection for 
the SAD model.

MATERIAL AND METHODS

Data were collected in accordance with the applica-
ble national regulations on livestock welfare in France.

Pigs and Data Collection

The present study includes data from 1,186 Large 
White boars over 8 generations of divergent selection 
for residual FI raised after weaning in the Rouillé INRA 
experimental farm (GenESI, Vienne, France). The se-
lection process was described in detail by Gilbert et al. 
(2007). The data used were collected from candidate 
boars tested in groups of 12 in pens equipped with 
single electronic feeders (ACEMA 64; Skiold Acemo, 
Pontivy, France). Pigs were age 67 ± 1 d (25 ± 4 kg) 
at the beginning of the test and were tested during the 
growing–finishing period up to 168 ± 13 d (115 ± 11 
kg). The records collected during the first week of the 
test, when pigs acclimated to the feeders, were dis-
carded from the analysis. Animals were fed ad libitum 
with a pelleted diet of cereals and soybean meal with 
10 MJ NE/kg and 160 g CP/kg, and a minimum of 0.80 
g digestible Lys/MJ NE.

During the 14 consecutive weeks (from wk 2 to 15) 
of the test period, animals were weighed weekly. The 
individual FI of each animal was automatically recorded 
each time it used the feeder. Weekly averages of the dai-
ly FI (WDFI) were then computed for each animal. The 
WDFI outlier values and WDFI for which more than 2 d 
of records were missing in a given week were removed 
from the analysis, as reported by David et al. (2015). 
The FCR was calculated for each animal i and week j 
(j ∈ {4, …, 13}) as follows (Huynh-Tran et al., 2017):

FCRij = WDFIij/ADGij ,

in which WDFIij is the WDFI of animal i for week 
j and ADGij is the ADG of animal i for week j (j ∈ 
{4, …, 13}) estimated over a 4-wk period as follows:

ADGij = (BWij + 2 − BWij − 2)/(ageij + 2 − ageij − 2) ,

in which BWij and ageij are the BW and the age of ani-
mal i at week j, respectively. Only animals with at least 
3 measures of FCR over the 10-wk period (wk 4 to 13) 
were retained for analysis. Extreme values of FCR (<0 
and >4.5) were considered outliers and set as missing. 
The final data set comprised 11,790 weekly FCR values 
for 1,186 male growing pigs available from wk 4 to 13 
of the test. For the sake of simplicity, we will denote tj ∈ 
{1, …, 10} instead of j ∈ {4, …, 13} hereafter. A total of 
3,986 animals was included in the pedigree.

Data Analysis

Estimations of Genetic Parameters. Repeated 
longitudinal FCR measurements were analyzed using 
the RR and SAD models. Both models can be written, 
for animal i at time tj, as 

FCRij = μi(tj) + ui(tj) + pi(tj) + εij ,� [1]

in which μi(tj) is the fixed effect at time tj; ui(tj) and 
pi(tj) are the random genetic and permanent environ-
mental animal effects functions with u ~ N(0, G ⊗  A) 
and p ~ N(0, P ⊗  I), in which A is the known rela-
tionship matrix; I the identity matrix; and G and P the 
covariance matrices between weekly measurements of 
FCR (of dimension 10 × 10) for genetic and perma-
nent environmental effects, respectively. Finally, εij is 
the random residual effect ε ~ N(0, Iσε

2). The random 
functions were independent from one another.

In the RR model, for a given random effect ui(tj), 
the general form of the random function of order m is 

( ) ( )
0

j
m

i j ik k j
k

u t a t
=

=∑ , in which aik is the (k + 1)th RR 
coefficient for the genetic effects for animal i, with a ~ 
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N(0,K⊗A), in which K is the covariance matrix of 
the additive RR coefficients, and φk(tj) is the (k + 1)th 
Legendre polynomial at time tj. In the RR model, the 
relationship between K and G is given by GRR = φKφ′, 
in which φ is the n × (m + 1) (in which n is the number 
of time points) matrix of the Legendre polynomials for 
all time points.

In the SAD model, each random function is defined 
by 3 parameters: the order of the antedependance (α), 
the degree of the polynomial for each antedependence 
parameter (β1 to βα), and the degree of the polynomial 
for the innovation variance (γ). The function for the 

random effect u is ( ) ( ) ( )
1

a

i j sj i j s i j
s

u t u t e t−
=

= +∑q , in 
which θsj is the sth antedependence parameter for time 
tj and ei(tj) is the error term for animal i at time tj; u 
and e are independent and e(tj) ~ N(0, Aσe

2(tj)). To 
reduce the number of parameters in the SAD mod-
el, continuous functions of time were assumed for 

antedependence parameters 
0

s
q

sj sq j
q

d t
b

q
=

=∑  and for 

the innovation variance ( )2

0
exp q

je q j
q

t b t
g

s
=

 
=  

 
∑ , in 

which dsq and bq are the coefficients for antedepen-
dence parameters and innovation variance.

We noted a SAD model with a given set of pa-
rameters as follows: SADα − β1, …, βαγ. To facilitate 
convergence and avoid identifiability problems be-
tween the structured random permanent environmen-
tal effect and the residual covariance matrices (Wang, 
2013), the residual term εij was removed from Eq. [1] 
for the SAD model. The residual variance is therefore, 
for this approach, included in the covariance matrix of 
the permanent environmental effect.

Covariance components were estimated for both 
models using the REML method using ASReml soft-
ware (Gilmour et al., 2009). Estimations for SAD 
models were computed using the OWN function that 
allows users of ASReml to model their own variance 
structure, as proposed by David et al. (2017). The 
fixed effects included were the same for both models, 
as previously described by Huynh-Tran et al. (2017).

Both the degree of the polynomial functions for 
the RR approach and the order and degrees of the an-
tedependence functions in the SAD approach were se-
lected by comparing nested models using likelihood 
ratio tests. Once the best model for each approach was 
identified, the data-fitting capacity of the selected RR 
and SAD models was compared using the Bayesian 
information criteria (BIC; Schwarz, 1978): BIC = 
−2ln(L) + c × ln(N − p), in which L is the REML of the 
model, N is the number of observations, and p and c 
are the number of fixed effects and covariance param-

eters, respectively. The approach (RR or SAD) with 
the lowest BIC was considered the best fit for the data.

We compared the heritability and the estimated the 
genetic covariance matrices obtained using the 2 ap-
proaches. The heritability estimates were computed for 
each week j as   ( )2 2/ jjjj jjj eh s= + +G G P , in which P̂  
and Ĝ  are the estimates of matrices P and G, respec-
tively; σe

2 is included for only the RR model. Standard 
errors of heritability estimates were calculated for the 
RR model in ASReml using the method proposed by 
Fischer et al. (2004). For the SAD model, analyti-
cal expressions of the SE are more difficult to obtain. 
Therefore, we used a bootstrap procedure to obtain SE 
for this model. The bootstrap steps were as follows:

1.	� In iteration l, sample a vector v l of antedependence 
parameters and innovation covariance parameters (for 
instance, ds0 to 

ssd
b

, b0 to b
g
are the parameters related 

to the genetic variance) using multivariate sampling 
( )ˆMVN vlv , V , in which v̂  is the vector of estimates, 

V is their covariance matrix estimated using ASReml, 
and MVN is multivariate normal distribution;

2.	� Using v l , calculate the genetic and permanent en-
vironmental variances for each time point (David 
et al., 2015) and then their heritabilities;

3. 	Repeat steps 1 and 2 10,000 times to obtain a vec-
tor of estimated heritabilities; and

4. 	Based on the vector of estimated heritabilities, cal-
culate the mean and SE for the heritability (Efron 
and Hastie, 2016).

The EBV for each time point for the RR and SAD 
models were obtained as follows: EBV obtained with 
the SAD model (EBV_SAD) were provided in the 
ASReml outputs and the EBV obtained with the RR 
model (EBV_RR) were computed using the estima-
tions of the individual regression coefficients provided 
by ASReml as ( ) ( )

0

ˆEBV_RR j
m

i j ik k j
k

t a t
=

=∑ . We de-

noted sEBV_RRi and sEBV_SADi as the sum of the 
EBV_RR and EBV_SAD, respectively, for an animal i 
over the test period.

We compared these EBV with each other and with 
the overall breeding values (the EBV from the animal 
model using the FCR computed over the 10-wk pe-
riod; cEBV) obtained by analyzing the FCR for the 
entire test period computed as the ratio of the ADFI 
during the 10 wk of test over the ADG for the same 
period. This overall FCR was analyzed using an ani-
mal mixed model: FCRi = μi + ui + εi , in which FCRi 
is the overall FCR for the entire test period for animal 
i, μi is the fixed effect, ui is the animal additive genetic 
effect of animal i, and εi is the residual term.

Selection Criterion. Next, computations ad-
dressed the issue of defining for each model a criteri-
on to select the best animals based on their 10 weekly 
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EBV values. First, the patterns of EBV variation 
over time were described using a trajectory classifi-
cation approach that classified animals into different 
trajectory groups using a k-means approach with the 
Euclidean distance. This method used a hill-climbing 
algorithm jointly with expectation–maximization. The 
optimal number of clusters was chosen according to 
the Calinski–Harabatz criterion (Genolini et al., 2015).

Next, the information contained in the 10 EBV 
was summarized in a reduced number of nind inde-
pendent variables using an eigendecomposition of 
the G matrices estimated using the RR and the SAD 
approaches. This method decomposes the covariance 
matrix into a set of independent eigenvectors and as-
sociated eigenvalues. Each eigenvalue represents the 
amount of variance explained by the associated eigen-
vector (Kirkpatrick et al., 1990). Summarized breed-
ing values (SBV) associated to the pth eigenvector 
(SBVpi) were calculated for each animal i by multi-
plying the coresponding eigenvector with the vector 
of EBVi. The SBV were denoted SBV_RRp and SBV_
SADp when obtained from the pth eigenvector of the 
G matrices of the RR and SAD models, respectively.

For the RR model, we also calculated SBV ob-
tained from the eigendecomposition of the K matrix 
as recommended for this model (Meyer and Hill, 
1997; Van Der Werf et al., 1998). These summarized 
EBV were denoted SBV_RRKp. The SBV_RRKp 

for animal i was given by i
0

ˆSBV_RRK
m

il pl
l

p a k
=

=∑ , in 
which kpl is the lth element of the pth eigenvector of K 
(p = 0, …, m). The eigendecomposition of the K ma-
trix instead of the G matrix has the advantage of pro-
ducing SBV that can be interpreted in regard to their 
variation over time. Actually, eigenfunctions of time 
can be obtained by multiplying the eigenvectors of K 
with the Legendre polynomials (Schnyder et al., 2001; 
Englishby et al., 2016). The K matrix is also usually of 
reduced dimension compared with G.

We then characterized, within each approach, the 
connection between the EBV group trajectory and the 
different SBV. In addition, to validate the interpreta-
tion of the SBV obtained with the 2 G matrices, they 
were compared with the SBV_RRKp. Finally, we 
compared these SBV with cEBV (EBV for the full test 
period FCR), sEBV_RR, and sEBV_SAD.

Appropriate Period for Estimating Longitudinal 
Feed Conversion Ratio. Lastly, we investigated wheth-
er FI, and therefore FCR, could be measured over a 
shorter period without compromising the description 
of the dynamic of FCR over time, to maintain the pos-
sibility to select for features of this dynamic. Reducing 
the time period for FI recording would allow collecting 
of records for more animals for this trait, and therefore 

FCR, and potentially increase the genetic gain. We first 
defined 3 different 5-wk periods with FCR records (ini-
tial period, wk 1 to 5; intermediate period, wk 3 to 7; 
and late period, wk 6 to 10) to be analyzed using the 
SAD model. The corresponding SBV were then com-
puted as previously described for this model. The peri-
od providing the SBV with the highest correlation with 
the first and second SBV obtained from the genetic co-
variance matrix G with the SAD model (SBV_SAD1 
and SBV_SAD2) obtained over the entire 10-wk period 
was considered the best period for recording FCR.

Next, starting from the previous best 5-wk period, 
the number of weeks used in the analysis was increased 
by 1 wk at a time from 5 to 8 wk, and the same compari-
son was applied to determine the minimum number of 
weeks needed to provide a “satisfactory” SBV for FCR.

RESULTS

Estimation of Genetic Parameters
After selection, the RR model of degree 2 for ge-

netic and permanent environmental effects was retained 
as the best model within the RR category and required 
13 parameters to be estimated. Meanwhile, for the SAD 
approach, SAD1–22 was selected as the best SAD 
model for genetic and permanent environmental effects 
and required 12 parameters to be estimated. The BIC 
values for the best RR and SAD models were −9,838 
and −10,060, respectively, indicating that the SAD ap-
proach provided the best fit for the data.

The changes in heritabilities over time are shown in 
Fig. 1. The heritability estimates were generally higher 
with the SAD model than with the RR model. They 
ranged from 0.22 to 0.46 (SE 0.03–0.06) for the SAD 
model and from 0.08 to 0.33 (SE 0.02–0.07) for the RR 
model. The heritabilities obtained with the RR model 
decreased up to wk 5 and then increased again toward 
the end of the test. For the SAD model, the heritability 
estimates were quite high at the beginning, decreased 
to a minimum at wk 8 (0.21 ± 0.03), and then increased 
before the end of the test period to reach values similar 
to the RR estimations. The ranges of SE were simi-
lar for the 2 approaches, from 0.02 to 0.07 for the RR 
model and from 0.03 to 0.06 for the SAD model.

The genetic correlations estimated for FCR over 
the 10 wk using the RR and SAD models are present-
ed in Fig. 2. The genetic correlations between 2 giv-
en weeks depended on the time interval between the 
weeks. The shorter the interval, the higher the correla-
tion. Correlations ranged from −0.39 to 0.98 for the 
RR model and from 0.08 to 0.83 for the SAD model. 
Consecutive week correlations were high and positive 
for both models, ranging from 0.91 to 0.98 for the RR 
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model and from 0.68 to 0.83 for the SAD model. For 
the RR model, the genetic correlations decreased as 
the interval between the weeks increased and became 
negative, resulting in negative correlations when the 
time interval between weeks was more than 5 to 6 wk. 
For the SAD model, the correlations decreased with 
the time interval but remained positive.

Selection Criterion

Estimated Breeding Value Trajectory Classifi­
cation. The Spearman correlation between the weekly 
EBV_SAD and weekly EBV_RR over 10 wk for all 
animals was 0.95. The individual EBV trajectories un-
der the 2 models (RR and SAD) were classified into 
3 groups as shown in Fig. 3. The 3 patterns of EBV 
trajectories were similar for both models. Cohen’s 
kappa agreement between the models was 0.80. The 
first EBV trajectory pattern was a continuous EBV in-
crease over time with a weak slope and a low initial 
value (35.4 and 40.3% of the animals for the RR and 
SAD models, respectively; “A” group). The second 
pattern also reflected an increase of the EBV over time 
but had a steeper initial slope and higher initial value 
(34.6 and 32.6% of the animals for the RR and SAD 
models, respectively; “B” group). The last EBV tra-
jectory pattern simply reflected a constant EBV over 
time (30.0 and 27.1% of the animals for the RR and 
SAD models, respectively; “C” group).

Selection Criterion Using Summarized Breeding 
Values. The approach based on eigendecomposition 
showed that the 2 first eigenvalues of GRR and genetic 

covariance matrix for SAD model (GSAD) explained 90 
and 73% of the genetic variation, respectively. The cor-
relations between the SBV obtained with the different 
approaches are presented in Fig. 4. It should be noted 
that, depending on the program used to compute the 
eigendecomposition, matrices of eigenvectors of op-
posite signs can be obtained for the same initial cor-
relation matrix. Therefore, we chose the signs of eigen-
vectors matrices to maximize the number of positive 
correlations with cEBV. The first summarized breeding 
values obtained from the matrix K with the RR model 
was highly correlated with SBV_RR1 (0.99) and SBV_
SAD2(0.99), whereas the second SBV obtained from 
the coefficients covariance matrix K with the RR model 
(SBV_RRK2) was highly correlated with the second 
summarized breeding value obtained from the genetic 
covariance matrix G with the RR model (SBV_RR2; 
0.99) and SBV_SAD1 (0.88) and also with sEBV_RR 
(0.96), sEBV_SAD (0.92), and cEBV (0.93).

In addition, the plots of the first 2 SBV depending 
on the trajectory clusters previously identified for the 
RR and SAD models (see Fig. 3) are presented in Fig. 5. 
For both approaches, the first 2 SBV were sufficient to 
describe the EBV trajectory types: for instance, for the 
SAD approach, animals in group A had low SBV_SAD1 
values, animals in group B had high SBV_SAD1 and 
high SBV_SAD2 values, and animals in group C had 
high SBV_SAD1 and low SBV_SAD2 values. This 
suggested that SBV_SAD1 captured the average values 
of EBV over time, whereas SBV_SAD2 captured the 
slope of the EBV curve. The correspondences between 
SBV_RRp and EBV trajectories obtained with the RR 

Figure 1. Changes of heritability estimates for feed conversion ratio over time under the random regression (RR) model using Legendre orthogonal 
polynomials and the structured antedependence (SAD) model. Standard errors are indicated as bars for each point estimate. 

Downloaded from https://academic.oup.com/jas/article-abstract/95/11/4752/4807432
by INRA (Institut National de la Recherche Agronomique) user
on 16 August 2018

48



Modeling longitudinal feed conversion ratio 4757

approach also showed a clear distribution of the indi-
viduals from each group trajectory according to combi-
nations of SBV_RRp. Finally, the plot of the eigenfunc-
tions (Fig. 6) showed that the first eigenfunction was 
negative during the first 2 wk, then was positive from 
wk 2 until wk 9, and became negative again and de-
creased until the end of the test. The second eigenfunc-
tion was always positive and stable from wk 1 to 5, then 
increased, and reached a maximum at the end of the test.

Appropriate Period for Estimating Longitudinal 
Feed Conversion Ratio. The correlations between 
SBV_SAD1 and SBV_SAD2 obtained for reduced 
test periods and SBV_SAD1 and SBV_SAD2 ob-
tained for the whole test period were estimated. The 
SBV_SAD1 related to the middle period had a higher 
correlation to SBV_SAD1 for the whole test period 
than that related to the first 5-wk period (0.93 vs. 
0.89, respectively), whereas its correlation with the 
SBV_SAD2 was lower (0.67 vs. 0.69 for wk 1 to 5 
and wk 3 to 7, respectively). When the evaluation pe-
riod was extended by 1 wk toward the beginning or to-
ward the end of the test period, these correlations did 
not increase for the middle period, contrary to those 
of the first 5-wk period extended for wk 6 (results not 

shown). Therefore, only results for the extended pe-
riods starting at the beginning of the test are reported. 
In this situation, the correlation between SBV_SAD1 
(SBV_SAD2) for the reduced period and SBV_SAD1 
(SBV_SAD2) for the whole test period increased with 
the number of weeks included, from 0.89 (0.69; wk 1 
to 5) to 0.98 (0.87; wk 1 to 8; Fig. 7).

DISCUSSION

Estimation of Genetic Parameters
Using the BIC, the SAD model showed a slightly 

better fit to the data than the RR model. Furthermore, 
the predictive ability 1 wk ahead, computed as pro-
posed by David et al. (2015), was similar for the 2 
models (average Vonesh concordance coefficient 
= 0.39 for both). The SAD model provided higher 
heritability estimates than the RR model. Similar re-
sults have been found in the literature for other traits 
(Jaffrézic et al., 2004; David et al., 2015). The low-
er values of heritability obtained with the RR model 
might be a consequence of the border effect problem 
associated with this model, which is eliminated in 

Figure 2. Genetic correlation estimates (x100) between times estimated with the random regression (RR) model (below the diagonal) and the struc-
tured antedependence (SAD) model (above the diagonal). The magnitude and sign of the correlations are indicated with darker and larger circles and blue 
(positive) or red (negative) colors, respectively. 

Downloaded from https://academic.oup.com/jas/article-abstract/95/11/4752/4807432
by INRA (Institut National de la Recherche Agronomique) user
on 16 August 2018

49



Huynh-Tran et al.4758

the SAD model that combines the antedependence 
parameters and innovation variances (Jaffrézic et al., 
2004), suggesting a greater confidence in the genetic 
parameters obtained with the SAD model. This was 
reinforced by results from a multiple trait model with 
a diagonal covariance matrix applied to weekly FCR. 
Heritabilities obtained with the SAD model were 
closer to those of the multiple trait model than herita-
bilities of the RR model with this multiple trait model 

(average absolute difference = 0.09 vs. 0.15, respec-
tively), the heritabilities being systematically lower 
with the RR model. Nonetheless, it should be noted 
that the computing time of the SAD model for each 
iteration is longer than the one of the RR model (2.7 
times longer, on average) but SAD models generally 
converge with fewer iterations. Consequently, on our 
data set, the total computing time of the SAD model 
was 1.2 times longer than for the RR model.

Figure 3. Individual EBV trajectories (in black) and group trajectories resulting from nonhierarchical k-means clustering analyses with 3 groups obtained 
with the random regression (a) and structured antedependence models (b). The proportion of individuals gathered in each group is indicated above each graph. 
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We used a bootstrap procedure to compute the SE 
of heritability obtained with the SAD model. It is also 
feasible to use Taylor expansion to obtain an approxi-
mate SE. Nonetheless, the formula becomes complex 
when the order of the antedependence increases.

The heritabilities obtained with the SAD model 
(from 0.22 to 0.46) at different weeks were in line with 
those reported in the literature for FCR values record-
ed over the full growing period on earlier generations 
of the same population (0.24 ± 0.06; Saintilan et al., 
2012) and in other Large White/Yorkshire populations: 
0.26 ± 0.07 (Bunter et al., 2010), 0.30 ± 0.03 (Saintilan 
et al., 2013), and 0.32 ± 0.05 (Do et al., 2013). The 
changes of heritabilities with time are consistent with 
the assumption that different genes can be associated 
with FCR at different stages of growth, as suggested 
by Shirali et al. (2013) for residual FI and FCR.

For the SAD and RR models, the genetic correla-
tions decreased as the time interval between measure-
ments increased. They became negative in the case of 
the RR model, although this is unlikely to reflect the 
true correlations between these distant periods. It has 
been previously reported that because the RR model 
cannot handle correlations that asymptotically tend to 
0, it provides biased estimates of the correlations for 
distant time intervals (Jaffrézic et al., 2004).

In such cases, the correlations become negative, 
as observed in previous studies (David et al., 2015). It 
should be noted that considering heterogeneous resid-
ual variance with time in the RR model did not modify 
these negative value estimates and did not reduce the 
border effects problem (results not shown). The posi-
tive genetic correlations over time estimated with the 
SAD model suggest that efficient animals with low 
FCR values at the beginning of the test period tend 

Figure 4. Distributions of the summarized breeding values (SBV_SAD1 and SBV_SAD2 = first and second summarized breeding values, respec-
tively, obtained from the genetic covariance matrix G with the structured antedependence [SAD] model; SBV_RRK1 and SBV_RRK2 = first and second 
summarized breeding values, respectively, obtained from the coefficients covariance matrix K with the random regression [RR] model; SBV_RR1 and 
SBV_RR2 = first and second summarized breeding values, respectively, obtained from the genetic covariance matrix G with the RR model), the sums of 
EBV over the 10 wk (sEBV_RR and sEBV_SAD = sum of EBV obtained with the RR and SAD models, respectively), and the EBV from the animal model 
using the feed conversion ratio computed over the 10-wk period (cEBV; on the diagonal), joint distributions of these estimates (below the diagonal), and 
Spearman correlations between the estimates (above the diagonal).
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to also have a lower FCR toward the middle of the 
test, but more independent results seem to be expected 
toward the end of the test. Henryon et al. (2002) esti-
mated the genetic correlations between FCR values in 
growing rainbow trout at different time points over a 
215-d period. Most of the correlations were positive 
and high. No reports about such genetic correlations 
for FCR could be found in the literature for pigs.

Selection Criterion

Modeling longitudinal data yields more accurate 
EBV due to the inclusion of repeated records over 
time and consideration of the covariance structure of 
the data (Boligon et al., 2011). However, the main dif-
ficulty of selection based on repeated measurement 
analysis is the obtention of as many EBV as time points 

used for the evaluation. The general idea is, therefore, 
to summarize these multiple EBV into a smaller set of 
new composite dimensions with a minimum loss of 
information (Van Der Werf et al., 1998), as success-
fully applied by Buzanskas et al. (2013). Ideally, 1 or 
2 indexes can capture the individual EBV trajectory 
profiles to ease animal selection.

In the current study, a classification approach was 
used to identify different typical EBV trajectories 
from the SAD and RR approaches, as earlier proposed 
to cluster egg production curves at the phenotypic lev-
el by Savegnago et al. (2011) and milk yield profiles 
at the genetic level by Savegnago et al. (2016). This 
trajectory classification is proposed in our study as a 
complementary analysis to describe the group trajec-
tories and better comprehend the animal profiles as 
compared with the selection objectives of a breeding 

Figure 5. Scatterplots of the individual first and second summarized breeding values obtained from the estimated covariance matrices K with the random 
regression (RR) model (a; SBV_RRK1 and SBV_RRK2, respectively), from the genetic covariance matrix G with the RR model (b; SBV_RR1 and SBV_RR2, 
respectively), and from the genetic covariance matrix G with the structured antedependence (SAD) model (c; SBV_SAD1 and SBV_SAD2, respectively). 
The groups of trajectories to which each individual belongs as determined using the nonhierarchical k-means approach (see Fig. 3) applied to the longitudinal 
EBV from the RR model (a and b) and from the SAD model (c) are indicated as red circles (A group), green squares (B group), and blue triangles (C group).
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program. To summarize the EBV, we applied an eigen-
decomposition of the G genetic covariance matrices 
from the RR and SAD models, as originally applied to 
the K matrix of the RR models (Van Der Werf et al., 
1998). The eigendecomposition has the advantage of 
accounting for the genetic covariances between weeks, 
which is not the case when using the average of the 
weekly EBV. By extracting the main axes of covari-
ability among the EBV along time, 1 or 2 eigencom-
ponents usually capture almost all the additive genetic 
variation in level and shape of the genetic curve, at 
least when applied to lactation curves (Druet et al., 
2005; Togashi and Lin, 2006). Our results show that 
the first 2 SBV obtained from the eigendecomposition 
of the G matrix of the SAD model provided informa-
tion similar to that of the eigendecomposition of the K 
matrix from the RR model. These SBV could, there-
fore, be similarly interpreted based on the eigenfunc-
tions from the K matrix or the trajectory classification 
applied to the weekly EBV. As a result, combina-
tions of the 2 first SBV are sufficient to describe the 3 
groups of trajectories. It suggests that animals within a 
trajectory share genetic features that drive the dynam-
ics of their feed efficiency during growth.

Despite differences in the estimation of the genet-
ic parameters between the 2 approaches, the selection 
results were very similar for the RR and SAD models 
and could be confirmed by computing correlations be-
tween different SBV and with cEBV. In practice, one 
of the SBV was related to the average level of FCR 
during the test period (SBV_SAD1 and SBV_RR2) 
and the other one was related to the slope of the curve 
over time (SBV_RR1 and SBV_SAD2). In spite of 
this high concordance between the 2 approaches, the 
first 2 eigenvectors according to GSAD explained only 

about 73% of the genetic variation, which is rather 
lower than for the RR model (90%).

As expected from earlier studies (Kirkpatrick et al., 
1990; Meyer and Kirkpatrick, 2005), the use of the K 
matrix and the G matrix of the RR model to calculate 
SBV led to very similar results. In the present study, the 
first eigenfunction changed sign with time. This sug-
gests that selection for this first component would have 
opposite effects for the intermediate period compared 
with the extreme periods (2 wk at the beginning and 
2 wk at the end of the trajectory). The second eigen-
function increased with time and was always positive. 
This means that selection for SBV_RRK2 would lead 
to selection in the same direction for all the time points, 
with a higher weight at the end of the testing period in 
comparison with the beginning of the period. Due to the 
high correlation between the first SBV obtained from 
the coefficients covariance matrix K (SBV_RRK1) 
and SBV_RR1 or SBV_SAD2, it confirmed our inter-
pretation of SBV_RR1 and SBV_SAD2 as indicators 
of the slope of the feed efficiency curve.

To summarize, SBV can be used for selection pur-
poses. To fully evaluate their potential, the estimation 
of genetic correlations with other production traits 
would provide a better insight on the use of the trajec-
tories for selection. Indeed, it can be assumed that ani-
mals from the A group (low average FCR but a regular 
increase over time) would show a different fat content 
at slaughter than animals from the C group of similar 
average FCR, so selection for different FCR trajecto-
ries would consolidate breeding objectives on carcass 
composition. Further comparison of responses to se-
lection for the traits of the breeding objective using 
different indexes options (cEBV and two first SBVs 
associated to the two first eigenvector of the matrix G) 

Figure 6. Two first eigenfunctions (unitless) associated with the covariance matrix K of the random regression model represented over the 10 wk of the test. 
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or a combination of two among them, would clarify 
the possible selection strategies. 

Appropriate Period for Estimating  
Longitudinal Feed Conversion Ratio

The accuracy of the estimation of genetic param-
eters heavily relies on the quantity of data available. 
On the other hand, the cost of individual FI measures 
is high. Therefore, there is a trade-off between parsi-
mony, complexity of the analysis, and potential bias, 
so choices need to be made. The goal is, therefore, 
to reduce the duration of the test period for FI with 
a minimum loss of accuracy for animal selection for 
FCR dynamic features, to test more pigs and increase 
the genetic gain (Begli et al., 2016). Wetten et al. 
(2012) proposed to use information on early periods 
of FI combined with information on growth to reduce 
the test period. In the current study, a similar conclu-
sion was reached: the first weeks of test showed bet-
ter correlations to selection criteria obtained with the 
whole test period than the middle and the last periods. 
The selection accuracy could be increased stepwise 
by extending the evaluation from 5 to 8 wk of dura-
tion. Further studies are required to better understand 
the link between the genetic gain, the costs associated 
with different strategies, and the changes in prediction 
accuracy due to a combined reduction of the duration 
of the test period and a greater number of pigs tested.

Conclusion

The current study indicates that the SAD model 
is promising for genetic selection: 1) it requires fewer 
parameters to fit the covariance matrices than the RR 
model and 2) it is not associated with the border effect 
problems and negative correlation estimates observed 
with the RR model. The use of SBV is a solution for 
animal selection applicable with the SAD model. The 
results of this study also suggest that a reduction of the 
duration of the FI test period to reduce measurement 
costs is probably feasible to select for feed efficiency.
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3.3. Application of the RR-SL model to longitudinal FCR 

As stated in the discussion of the previous article, we tested different options to reduce the 

border effect problem observed with RR-OP. The first easy one was to consider heterogeneous 

residual variances with time. Such modification of the residual variance did not solve the border 

effect problem (fig 3.2) of the variance component estimations.  

 

Figure 3.2. Heritability estimates of random regression using Legendre orthogonal polynomials 

with homogeneous residual variances (RR-OP_Homogenenous) and heterogeneous residual 

variances (RR-OP_Hetegenenous), and with random regression using splines (RR-SL). The 

green, blue and orange vertical bars are the standard error (SE) of the heritability estimates.  

 

Another solution tested to reduce the border effect problem was to use splines instead of 

orthogonal polynomials in the random regression models. 

3.3.1. Material and methods 

The model described in Eq.1 in the previous article was applied to longitudinal FCR of male 

pigs with a random regression model using natural cubic splines (RR-SL) to account for the 

covariance structure of the data.  

To select the number and positions of the knot points, we first increased the number of knots 

evenly distributed, starting with 2, until the loglikelihood of the model did not increase 
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anymore. Then the position of the knots was changed iteratively to the neighbouring weeks, 

and the model with the maximal likelihood was retained. It was a RR-SL with 3 knots at weeks 

2, 5 and 8 (9 parameters). 

3.3.2. Results and discussion 

The BIC of the RR-SL model was -9860, lower than the one of the RR-OP model, but higher 

than the SAD model. The pattern of heritability over time obtained with the RR-SL model was 

similar to the one obtained with the RR-OP model (Fig. 3.2). Once again, we observed an 

increase of the genetic and permanent effect variances at the beginning and at the end of the 

test period. The genetic correlations obtained with the RR-SL model (Fig. 3.3) were in line with 

those of the RR-OP model. 

 

Figure 3.3. Genetic correlations (above the diagonal) and permanent environmental 

correlations (below the diagonal) between times, estimated with the random regression model 

using natural cubic splines. The magnitude and sign of the correlations are indicated with 

darker and larger circles and blue (positive) or red (negative) colors, respectively. 

 

These results confirmed that the SAD model provided the better fit-to-the-data for FCR. 

Conversely to the expectation, applying a RR-SL model did not reduce the border effect 

problem observed with the RR-OP model. The discrepancy between the heritability and 

genetic correlations obtained with the SAD and the RR models is not satisfactory. To get a 

clearer idea about the true heritability and the true genetic correlations, we wanted to apply a 

multiple trait model to the data. The advantage of such model is to make no assumption about 
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the form of the covariance structure of the data. However, since the number of time points 

was large, the MT model never converged.  

3.4. Predictive ability one week ahead 

In order to help real time management of animals and to reduce waste of feed, it would be 

interesting to anticipate the feed conversion ratio of the animals. To do so, we compared the 

phenotypic predictive ability of the different models one week ahead. To perform this 

comparison, we predicted for the animals of the last generation (164 animals) the observations 

of the next week given their observations of previous weeks and all the observations for the 

other animals from previous generations. The predictive ability for each week (5 to 9) was 

estimated using the Vonesh concordance coefficient (VCC) for each model as defined in 

chapter 1, using data from week 1 to w in the last generation to predict weeks w+1, with w = 

4,…, 8.  

 

Figure 3.4. Average Vonesh concordance coefficients for different models computed for 

periods from week 5 to week 9. RR-OP = random regression using orthogonal polynomial; 

SAD = structured antedependence model, RR-SL = random regression using splines with 3 

knots at weeks 2, 5 and 8.  

 

The number of weekly FCR records of the last generation ranged from 115 to 164 depending 

on the week. Similar patterns of VCC were obtained for all models. The VCC decreased from 
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week 5 to week 7, slightly increased in week 8, and decreased again in week 9 where the number 

of records available was the lowest.  

The results showed that the predictive ability of SAD is in line with those of RR-OP and RR-

SL. To summarize the results, we calculated the average VCC for weeks 5 to 9 as:  

9

5

9

5

j

j j

j

j

j

j

n *VCC

VCC

n

=

=

=

=

=




 

The mean 𝑉𝐶𝐶̅̅ ̅̅ ̅̅  was 0.39 for all models. Altogether, it indicates a low concordance between the 

predicted and observed phenotypes for all models. With this situation additional information 

would be necessary to help real time management of the animals.  
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3.5. Conclusion 

In this chapter,  

1. We performed the comparison of different models to analyze longitudinal FCR. Among 

them, the SAD model showed advantages in terms of number of parameters and control 

of the border effects which affect the RR models.  

2. The structured antedependence model showed a similar predictive ability as RR-OP and 

RR-SL models.  

3. We also proposed an approach for summarizing the longitudinal EBV into few values, 

that seems promising for selection.  

 

Altogether, this chapter provides new material for animal selection based on animal’s EBV 

profile for feed efficiency. To explicit the potential of genomic information for such 

longitudinal analyses, in the following chapters we exploited the genomic information in a 

attempt to improve the genetic prediction (chapter 4) and figure out the impact of the divergent 

selection for RFI at the pedigree and genomic level (chapter 5).  
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Chapter 4 - PEDIGREE AND GENOMIC PREDICTIONS OF 

LONGITUDINAL DATA FOR RESIDUAL FEED INTAKE AND 

AVERAGE DAILY GAIN IN GROWING PIGS  
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4.1. Introduction: use of genomics for longitudinal feed efficiency 

In the previous chapters, the longitudinal analyses have shown their advantages for genetic 

evaluation based on pedigree information. In this chapter, we investigate longitudinal models 

(random regression, structured antedependence and multiple trait models) applied to residual 

feed intake. This approach using the pedigree relationship matrix will be compared with the 

“single step” approach, in which both pedigree and genomic information are combined into an 

H relationship matrix.  

 

This work has been developed in collaboration between INRA, France, and Iowa State 

University, USA. In the frame of the “EIR-A” program (Ecole internationale de la recherche 

d’Agreenium”, I spent three months (from Nov 2017 to Feb 2018) at the Animal Science 

Department, Iowa State University, USA, under the supervision of Pr. J.C.M Dekkers. This 

work is presented in the form of a paper in preparation to be submitted to Genetics Selection 

Evolution.  
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Abstract  

The objectives of this study were i) first, to compare three models to account for longitudinal 

measurements: random regression (RR), structured antedependence (SAD), multi-trait (MT) 

models for genetic parameters and breeding value (EBV) estimations of two longitudinal traits: 

average daily gain (ADG) and residual feed intake (RFI), measured each week from 12 to 25 

weeks of age; ii) second, to compare a usual pedigree-based animal mixed model (Best Linear 

Unbiased Prediction, BLUP) with a single step genomic BLUP model (HBLUP) in terms of 

accuracy and bias of pedigree and genomic predictions for ADG and RFI. Data from a 

population of 2345 growing Large White pigs from two lines divergently selected for RFI over 

eight generations (G0 to G7) were used for the analysis. The SAD model best fitted the data for 

both traits and used the lowest number of parameters (8 and 12 parameters for ADG and RFI, 

respectively). The heritability estimates for all models ranged from 0.07 to 0.49 for ADG, and 

from 0.06 to 0.35 for RFI, depending on the week of test and model. For both traits, genetic 

correlations between weeks were high (≥ 0.58) when weeks were separated by one week, and 

close to zero between extreme weeks. Negative genetic correlations between the first and last 

weeks of test were obtained with RR and MT models. Prediction accuracy of the three models 

were computed using a cross-validation approach for two scenarios in which the oldest animals 

(G0 to G4) were used to train the model and predict the genetic merit of the youngest animals 

(G5 to G7) in the high RFI and the low RFI lines separately. The prediction accuracies were 

low for both traits (≤0.42 for ADG and ≤0.32 for RFI) and all models and were not 

systematically improved by the use of genomic information. However, better accuracies were 

obtained for ADG than for RFI. We conclude that the greater heritability, and possibility the 

limited response to selection of ADG in these lines compared to RFI, could explain some of the 

poor prediction accuracies for RFI.  

 

Key words: genetic, genomic prediction, residual feed intake, average daily gain, pigs 
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INTRODUCTION 

Feed costs account for about two third of the pork production costs. To assess the productivity 

and feed efficiency of a pig system, average daily gain (ADG) and residual feed intake (RFI) 

are widely used [1]. However, genetic evaluations on ADG and RFI are mostly carried out on 

the average of the trait over a given period. Most studies assume that the genetic parameters 

such as genetic variances, and subsequently heritabilities, are constant over time, even if it is 

known that the genetic potential of the animal changes during the production period for these 

traits [2]. Over the last years, with the proliferation of monitoring systems such as self-feeders, 

electronic identification and molecular biotechnologies, the repetition over time of performance 

records (e.g. feed intake and body weight measurements) on one hand, and genome-wide single 

nucleotide polymorphisms (SNP) marker genotypes on the other hand, have become available 

for a large number of farm animals. To estimate genetic parameters, the Best Linear Unbiased 

Prediction (BLUP) approach using a pedigree relationship matrix to quantify the additive 

genetic effects is commonly used since 1980: it is simple and has low computational 

requirements. Recently, a GBLUP approach has been proposed [3], that includes low to medium 

density marker genotypes in a genomic relationship information, accounting not only for 

recombination events in the genotyped pedigree (i.e., linkage analysis) but also for the 

population linkage disequilibrium pattern in the genome, i.e., the possibility of predicting alleles 

at some loci on the basis of alleles at other (possibly close) loci [4]. The accuracies of genomic 

predictions can be improved by combining genomic information and information from 

traditional pedigree in a single-step BLUP approach or HBLUP approach [5–7] to combine 

informations from genotyped and non-genotyped animals.  

Even if longitudinal models have been used to estimate genetic parameters over the last two 

decades, few studies evaluated genomic prediction combined with longitudinal models [8,9]. 

Recently, we investigated the structured antedependence model for genetic evaluation and 

found that it has several advantages in comparison with the random regression model [10] when 

applied to feed conversion ratio. In this paper, we will compare the accuracy and bias of genetic 

and genomic longitudinal models for the predictions of ADG and RFI.  
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MATERIALS AND METHODS 

Data were collected in accordance with the national regulations of animal care in agriculture in 

France.  

Animals and phenotypes 

Data consisted of body weight (BW), daily feed intake (DFI) and backfat thickness (BFT) 

records of 2435 growing French Large White pigs (1186 males, 580 females, and 669 castrated 

males). These animals were from a divergent selection experiment for RFI: one line was 

selected for low RFI (LRFI, more efficient) and the other line was selected for high RFI (HRFI, 

less efficient). The development of the selected lines and performance testing procedures were 

described in Gilbert et al. (2007)[11].  

In brief, animals born in a given farrowing batch were gathered at weaning (28 days of age) in 

a single post-weaning unit (UE GenESI, Rouillé, France). At 10 weeks of age, about 48 pigs 

were moved to a growing-finishing room with four pens per batch equipped with single-place 

electronic feeders (ACEMA 64, Pontivy, France). Twelve animals of same sex were allotted to 

each pen and had ad libitum access to a pelleted diet based on cereals and soybean meal 

containing 10 MJ NE/kg and 160 g CP/kg, with a minimum of 0.80 g digestible Lys/MJ NE. 

The BW and age at the beginning of the test averaged 25±4 kg and 67±1 days, respectively. 

The average BW and age at the end of the test were 115±11 kg and 168±13 days. All pigs were 

allowed to acclimate to the feeders for about a week, so the records of the first week of the test 

period were removed from the data set. During 16 consecutive weeks (from the 2nd week to the 

17th week of the test period), males were weighed weekly, and the majority of females and 

castrated males were weighed monthly.  

Weekly averages of daily feed intake (FI) were computed for each animal from the records of 

the feed intake visits to the electronic feeders. The outliers and inaccurate values (more than 

two days of records missing in a given week) were removed, as reported in [12]. The ultrasonic 
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backfat thickness (BFT) was the average of 3 measurements on both sides of the spine at the 

level of the neck, the back and the kidneys of the animal. For the males, BFT were measured at 

around 35 kg, 65 kg and 90 and 95 kg, whereas, those of females and castrated males were 

measured at weeks 11, 15, 19 and 23.  

Weekly missing records for BW and BFT for week j were predicted by linear interpolations, as 

proposed for BW by Huynh-Tran et al. (2017) [13]. Data from the 2nd week to the 15th week of 

test were used to compute longitudinal ADG for week 4 to week 13, as reported in [13]. The 

average metabolic body weight for each week (AMBW, [14]) was similarly calculated over a 

4-week period to limit the influence of inaccurate BW measurements. Thus, ten weekly records 

of each trait were available per animal. The values of ADG, BFT, AMBW and FI that deviated 

by more than 3 standard deviations (SD) from their respective means were removed from the 

analysis. The final dataset comprised 22250 records from 2435 animals. A total of 3986 animals 

was included in the pedigree file.  

 

Genomic markers 

The Illumina SNP60 Beadchip V2 (Illumina Inc., San Diego, CA) and the GeneSeek Genomic 

Profiler HD were used for genotyping all sires from generations G0 to G7, and dams from 

generations G0 to G6 (660 pigs). Only the 42780 SNP that overlapped between the two panels 

were used. The SNP with minor allele frequencies lower than 5%, with missing position or a 

call rate lower than 95% were removed from the analyses, as were excluded individuals with 

more than 4 % genotype inconsistencies with their parents or progeny. After this quality control, 

39,557 SNPs remained for further analyses. Missing genotypes in each SNP chip panel were 

then imputed on the animals genotyped with the alternate panel using the pedigree information 

with FImpute [15]. Altogether, 64487 SNPs genotyped or imputed on all pigs were available 

for further analyses.  
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Data analyses 

General model for longitudinal data analyses. Three models were used: the structured 

antedependence (SAD), random regression with Legendre orthogonal polynomials (RR), and 

multiple trait (MT) models, with either a pedigree relationship matrix or a so-called H matrix 

combining pedigree and genomic relationships. The general form of the model is the same for 

all cases, for animal i at time tj:  

                                         
( ) ( ) ( ) ( ) ( )i j i j i j i j i jy t t u t p t t = + + +

                              (Eq.1) 

Where yi(tj) is the phenotype of animal i at time jt , ( )i jt  is the vector of fixed effects at time 

jt , ( )i ju t  and ( )i jp t  are the random genetic and permanent environmental effects for animal i 

at time jt , with: ( )~ 0,N p P I , ( )~ 0,N u J  and ( )~ 0,N ε D I , where I is the identity 

matrix of appropriate size, P the 10 x 10 covariance matrix of the weekly permanent effects, 

and D is the 10 x 10 diagonal matrix of the residual effects across weeks. J is the 10 x 10 

covariance matrix of the weekly genetic effects;   is A , the pedigree-known relationship 

matrix for the genetic evaluations, and H, the matrix combining genomic and pedigree 

informations, for the genomic models as proposed by Legarra et al. (2009) [5], Aguilar et al 

(2010) [16] and Christensen and Lund (2010) [7]: 
1 1

1 1

22

0 0

0 w

− −

− −

 
= +  

− 
H A

G A
, with A22 the 

pedigree-based numerator relationship matrix for the genotyped animals (660 animals), 

*

22(1 )w  = − +G G A , in which   is the proportion of genetic variance not captured by the 

markers. According to Christensen (2012) [1], the change of (1 )−  has a small effect on the 

accuracy of the breeding value predictions. Therefore, in this study, we used   = 0.05, as 

mostly used in the literature. The matrix G* was obtained by scaling the genomic relationship 

matrix G [2], to equal the means of the diagonal and off-diagonal elements of the G and A22 

matrices. The SAD, RR and MT models differed for the covariance matrices P, J and D.  
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MT covariance structures. By definition, the MT model has unstructured covariance matrices 

for P and J. Nonetheless, since such assumption requires a large number of parameters to 

estimate, we considered that ADG (FI) was the same trait for groups of two to three 

consecutive weeks. Four periods were then defined: weeks 1 to 3, weeks 4 to 5, weeks 6 to 7, 

weeks 8 to 10, leading to the following constrained P, J and D matrices:
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In total, 21 parameters were thus necessary to estimate with the MT model. 

 

 

RR and SAD covariance structures. The RR and SAD approaches reduced the number of 

parameters to estimate in Eq 1 by modelling the form of the random effects functions. 

In the RR model, for a given random effect ( )i ju t , the general form of the random function of 

order s is: 
0

( ) ( )
s

i j ik k j

k

u t a t
=

= , where ika  is the (k+1)th random regression coefficient for the 

genetic effects for animal i, with ( )0,N a ~ K  where K is the covariance matrix of the 
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additive random regression coefficients, and ( )k jt is the (k+1)th Legendre polynomial at time 

jt . In this model, the relationships between K and J are given by
'

RRJ = φΚφ , where φ  is the 

(n x (s+1), n being the number of time points) matrix of the Legendre polynomials for all time 

points.  

In the SAD model, the random effect function consists in a regression on preceding 

observations. The function for the random effect u is defined as: ( ) ( ) ( )
1

i j wj i j w i j

w

u t u t e t



 −

=

= +

, where   is the order of the antedependence, wj  is the wth antedependence parameter for time 

jt , and ( )i je t  is the error term for animal i at time tj ( ) ( )( )20j e jt ~ N , te  . To reduce the 

number of parameters to estimate, the antedependence parameters and the variance of the error 

term were considered as functions of time: 
0

w

q

wj wq j

q

t



 
=

= , 
2

0

q

e j q j

q

( t ) exp t



 
=

 
=  

 
 . The SAD 

model for each random term is thus defined by three parameters: the antedependence order, the 

degree of the polynomial for each antedependence parameter ( 1  to  ), and the degree of the 

polynomial for the innovation variance (  ).We noted a SAD model with a given set of 

parameters as follows: SAD - 1 ,…,   . To ease convergence and avoid identifiability 

problems between the structured random permanent environmental effects and the residual 

covariance matrices [17], the SAD model in our study merged the residual with the permanent 

environmental effects.  

All models were applied to the data using the REML approach in ASReml 3.0 [19]. The best 

models within the SAD and RR approaches were first selected by comparing nested genetic 

models with the pedigree relationship matrix using likelihood ratio tests (LRT). In addition, 

Bayesian Information Criteria (BIC) [18] were computed to compare the different models: 

BIC = -2ln(L) + c*ln(N-p), where L is the restricted maximum likelihood of the model, N the 

number of observations, and p and c the number of fixed effects and covariance parameters, 

respectively. The model (RR, SAD or MT) with the lowest BIC was considered as the best fit 

to the data. The same structures of models were used when the genomic information was further 

included in the analyses. 

 

Variance components estimations. Estimates for RFI were obtained from the genetic and 

permanent effects of animal models applied to weekly feed intakes including time specific 
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ADG, AMBW, BFT as covariates, and the same fixed effects as for the model of ADG. The 

fixed effects included in these models were the herd, week, pen, age at the beginning of test and 

interaction between week and generation, and sex and batch.  

Variance components were obtained with the ASReml software [19]. Standard errors of the 

heritabilities were computed using a standard Taylor series approximation built in ASReml with 

RR and MT models, and using bootstraps for the SAD estimations [10]. The genomic models 

required the computation of the H matrix. It was obtained and formated using PreGSf90 [20] 

and modified with R to be supplied to ASReml as a user defined relationship matrix.  

 

Prediction accuracy and biases  

To evaluate the models ability to predict breeding values, the predictive abilities of the different 

approaches were investigated using cross-validation. From the initial database (2435 animals), 

two datasets were distinguished: a training dataset (n=1169, including 469 genotyped 

individuals), including animals of the first five generations of selection (G0 to G4) , and two 

validation datasets consisting of animals of the last three generations (G5 to G7), each line being 

treated separately: the HRFI line (n1=99, scenario 1) and LRFI line (n2=93, scenario 2).  

First, the models were run on the full data to obtain the corrected phenotypes (yc) of the 

genotyped individuals. Because of the limited number of genotyped animals in the validation 

dataset having phenotypic records (only sires and not dams), corrected phenotypes of all 

genotyped individuals were obtained as the mean of their progeny corrected phenotypes, 

ignoring their own performances when available. The average number of progeny per sire or 

dam were 18 for LRFI pigs and 20 for HRFI pigs in the validation datasets.  

Second, the same models were applied to the reduced training dataset (full dataset without 

phenotypes for the individuals of the validation dataset). The estimated breeding values (EBV) 

predicted with the pedigree matrix (EBVp) and with the genomic matrix (GEBVp) on the 

validation dataset were used to compute the predictive ability of each model. Two criteria were 

used: the accuracy and the bias of the predictions. For each week, the prediction accuracy was 

defined as the weighted correlation between the EBVp or GEBVp and the corrected phenotypes 

yc, divided by the square root of the corresponding weekly heritability estimated from the full 

dataset [21]. The individual weights to compute the weighed correlations were the number of 

progeny. The bias corresponded to the regression coefficient of yc on EBVp or GEBVp. Since 

EBVp (respectively GEBVp) was the breeding value of the parent, and yc the average corrected 

phenotypes of its progeny, the expected bias was 0.5.  
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The EBVp and GEBVp of SAD and MT were directly obtained from the outputs of ASReml, 

while EBVp of RR models were computed using the estimations of the individual regression 

coefficients provided by ASReml as ( )
0

ˆ( ) _ ( )
s

i j ik k j

k

G EBV RR t a t
=

= .  

Finally, to compare the longitudinal animal models with the classical animal models as usually 

applied on a single record per animal, animal models with the A or H relationship matrix were 

applied to FI and ADG computed over the test period. The full test RFI was given by:   

i i RFIi
i i i i i RFI RFIFI ADG AMBW BF u p = + + + + + +   

In which iFI = average daily feed intake over the test period, iADG  and iAMBW  are the ADG 

and AMBW of animal i for whole test period computed as:  

 
_ _

_ _

i end i begin

i

i end i begin

BW BW
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age age

−
=

−
 , 

( )

1.6 1.6

_ _

_ _1.6

i end i begin

i

i end i begin

BW BW
AMBW

BW BW

−
=

 −
 , and iBF is the backfat 

thickness of animal i at the end of test (week 12).   

 

RESULTS 

Goodness of fit  

The number of parameters and BIC of the best model for each category are presented in Table 

1. With ADG, the best SAD model was a SAD111/111 for the genetic and permanent 

environmental effects, respectively, with 8 parameters. The best RR model was of degree 2 for 

both genetic and environmental variances (13 parameters), when the multiple-trait model for 

the four periods had 21 parameters. The lowest BIC was obtained for the SAD model.  

For RFI, the SAD122/122 model and the RR model of degree 2 for both the genetic and 

permanent environment effects were kept. The BIC of the three models ranged from 5984 for 

SAD (with 12 parameters) to 7232 for MT (with 21 parameters).  
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Table 4.1. Log Likelihood (LogL), number of parameters and Bayesian Information Criterion 

(BIC) of best models for each category: random regression (RR), structured antedependence 

(SAD) and multi trait (MT) models for average daily gain (ADG) and residual feed intake 

(RFI).  

Trait Best category 

model1 

LogL Number of 

parameters 

BIC 

ADG RR (2/2) -9919 13 19968 

 SAD (111/111) -8594 8 17268 

 MT -11267 21 22744 

RFI RR (2/2) -3403 13 6936 

 SAD (122/122) -2932 12 5984 

 MT -3511 21 7232 
1
RR (2/2) = RR model with Legendre polynomials of degree 2 for genetic random effect and permanent 

environmental random effects; SAD (111/111) = SAD model with degree 1 for antedependence, antedependence 

parameters and error variances for both genetic and permanent environmental random effects 

Computation of the H matrix 

The average of the diagonal elements and off-diagonal elements of matrices A22 and G were 

1.033 and 0.072, respectively. The correlations between elements of matrices A22 and G were 

0.90 for all elements, and 0.91 for off-diagonal elements. Correlations between EBV from SAD 

and RR were 0.95 and 0.96 for RFI and ADG, respectively. Correlations between SAD and RR 

GEBV were 0.93 and 0.95 for RFI and ADG, respectively. Their correlations were also high 

with (G)EBV of MT models (>0.93 for both traits).  

Heritability estimates 

The estimates for ADG heritability obtained with the pedigree matrix varied from 0.07 to 0.42 

for SAD, from 0.18 to 0.49 for RR, and from 0.42 to 0.23 for MT (Figure 1.a). The estimates 

followed a common trend for MT and RR models: they decreased from the beginning to the 

end of test, whereas those of the SAD model increased from week 1 to week 6 and then 

decreased until the end of test. For RFI, the heritability estimates for each model are presented 

in Figure 1.b. They ranged from 0.15 to 0.36, 0.18 to 0.27, and 0.08 to 0.26 for SAD, RR and 

MT models, respectively. The heritability estimates of the SAD model were higher than those 

of RR for all weeks, except week 10. The heritability estimates for MT were lower than those 

of the SAD model, whereas they were higher than the heritability estimates of RR.  

With the H matrix the heritability estimates were very close to those obtained with the A matrix, 

with a maximum difference of 0.03 points for ADG and 0.05 for RFI. For the whole test period, 
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the heritability estimates with the A matrix and with the H matrix were 0.39±0.05 and 0.38±0.05 

for ADG, and 0.21±0.03 and 0.20±0.03 for RFI.   

 

 

a. 

b.  

Fig. 4.1. Heritability estimates with matrix A (solid curves) and with matrix H (dash curves) 

for average daily gain (ADG, a) and residual feed intake (RFI, b) over 10 weeks, using 

random regression (RR), structured antedependence (SAD) and multi trait (MT) models.  
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Genetic correlations 

Average daily gain: The genetic correlations between weeks obtained with the genetic models 

were high (Fig. 2), ranging from 0.20 to 0.94 for the SAD model, and from -0.18 to 0.98 for the 

RR model. They generally decreased with the distance between weeks. The 1-week interval 

correlations ranged from 0.58 to 0.94 for SAD and from 0.93 to 0.98 for RR. The MT model 

showed the same patterns, with genetic correlations from -0.03 to 0.87 and high genetic 

correlations for 1-week intervals.  

Residual feed intake: The genetic correlations between weeks obtained with the genetic 

models were high (Fig. 3), ranging from 0.20 to 0.90 for the SAD model, and from -0.20 to 

0.97 for the RR model. They generally decreased with the distance between weeks. The 1-week 

interval correlations ranged from 0.61 to 0.90 for SAD and from 0.90 to 0.97 for RR. The 

genetic correlations of MT model ranged from -0.14 to 0.70 and genetic correlations for 1-week 

intervals varied from 0.36 to 0.70.  

For both ADG and RFI, when the H matrix replaced the A matrix in the models, very similar 

genetic correlations matrices were obtained.  
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Fig. 4.2. Genetic correlation estimates between weeks (periods) with matrix H (above diagonal) 

and matrix A (below diagonal) for average daily gain estimated with random regression (RR), 

structured antedependence (SAD) and multi trait (MT) models. For MT model, the 10 weeks 

were combined into four periods (weeks 1 to 3, weeks 4 to 5, weeks 6 to 7, weeks 8 to 10). 
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Fig. 4.3. Genetic correlation estimates between weeks (periods) with matrix H (above diagonal) 

and matrix A (below diagonal) for residual feed intake estimated with a random regression 

(RR), structured antedependence (SAD) and multi trait (MT) models. For MT model, the 10 

weeks were combined into four periods (weeks 1 to 3, weeks 4 to 5, weeks 6 to 7, weeks 8 to 

10). 
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Prediction accuracies and bias for ADG 

The accuracies of the genetic and genomic predictions are presented in Tables 2 (Scenario 1) 

and 3 (Scenario 2).  

 

Predicting HRFI pigs (Table 2). Accuracies were generally low. They ranged from -0.10 to 

0.13 for the pedigree predictions and varied from -0.02 to 0.15 for the genomic predictions. 

Some accuracies were slightly negative, as low as -0.15, especially for the first and last weeks 

of prediction. No clear difference was observed between A and H based models, except for the 

SAD model where the HBLUP seemed to improve the prediction accuracies. The accuracy was 

improved with HBLUP only for period 1 for the MT model (0.06 vs -0.03 for the HBLUP and 

BLUP models, respectively).  

The biases of the RR model ranged from -0.34 to 1.20 for the BLUP, and from -0.07 to 0.68 for 

the HBLUP. The biases of the SAD model were quite low for BLUP (from -0.07 to 0.55), and 

increased with HBLUP (from -0.08 to 0.82), getting closer to the target value 0.5. The biases 

of the MT model ranged from -0.19 to 0.48 for BLUP, and from -0.05 to 0.40 for HBLUP. For 

the whole-test ADG, the accuracies (bias) were 0.28 (0.62) and 0.32 (0.75) for matrices A and 

H, respectively.  

 

Predicting LRFI pigs (Table 3). The accuracy to predict EBV in the LRFI line was slightly 

better than to predict the HRFI pigs. The prediction accuracies were higher with RR than with 

SAD when the pedigree matrix was used. The HBLUP seemed to improve the prediction 

accuracy for the last five weeks of test with RR, while it was increased for all weeks with the 

SAD model. The SAD model had biases closer to 0.5 than those of RR with the H matrix, 

ranging from 0.29 to 0.89. The HBLUP with the MT model slightly improved the prediction 

accuracy for the last three periods, but accuracies were generally low, and the bias improvement 

was not clear. For ADG over the entire test, accuracies (bias) were 0.31 (0.51) and 0.42 (0.59) 

for BLUP and HBLUP approaches, respectively.  
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Table 4.2. Accuracies and biases of predictions for weekly average daily gain in the high 

residual feed intake line validation dataset with random regression (RR), structured 

antedependence (SAD) and multi trait (MT) models with the pedigree (_A) or the combination 

of pedigree and genomic (_H) relationship matrix.  

RR 
week Cor(y*,EBV)1 Accuracy_A Bias_A Cor(y*,GEBV)2 Accuracy_H Bias_H 

1 -0.05 -0.10 -0.34 0.03 0.05 0.12 

2 0.00 0.00 0.00 0.04 0.06 0.19 

3 0.07 0.13 1.20 0.07 0.13 0.68 

4 0.06 0.11 0.65 0.05 0.10 0.38 

5 0.06 0.11 0.51 0.05 0.10 0.35 

6 0.07 0.13 0.52 0.06 0.12 0.31 

7 0.07 0.13 0.61 0.07 0.13 0.32 

8 0.06 0.11 0.59 0.06 0.11 0.35 

9 0.02 0.04 0.25 0.04 0.08 0.46 

10 -0.03 -0.09 -0.23 -0.01 -0.02 -0.07 

SAD 
week Cor(y*,EBV) Accuracy_A Bias_A Cor(y*,GEBV) Accuracy_H Bias_H 

1 0.06 0.13 0.55 0.02 0.05 0.23 

2 0.00 0.00 0.01 0.08 0.13 0.67 

3 0.03 0.05 0.16 0.10 0.15 0.82 

4 0.05 0.04 0.16 0.07 0.10 0.45 

5 0.02 0.07 0.24 0.07 0.10 0.42 

6 0.05 0.04 0.10 0.04 0.07 0.20 

7 0.04 0.07 0.16 0.05 0.09 0.29 

8 0.05 0.11 0.17 0.05 0.11 0.47 

9 0.03 0.09 0.09 0.05 0.15 0.60 

10 -0.03 -0.10 -0.07 -0.04 -0.15 -0.08 

MT 
period Cor(y*,EBV) Accuracy_A Bias_A Cor(y*,GEBV) Accuracy_H Bias_H 

Week 1 to 3 -0.02 -0.03 -0.19 0.04 0.06 0.28 

Week 4 to 5 0.07 0.12 0.46 0.06 0.11 0.39 

Week 6 to 7 0.06 0.12 0.48 0.06 0.12 0.40 

Week 8 to 10 0.01 0.01 0.01 -0.01 -0.01 -0.05 

Animal model 
 Cor(y*,EBV) Accuracy_A Bias_A Cor(y*,GEBV) Accuracy_H Bias_H 

Whole test 0.17 0.28 0.62 0.20 0.32 0.75 
1y* = average corrected phenotypes of genotyped individuals in the validation set using the A relationship matrix; EBV = 

estimated breeding value; GEBV = estimated breeding value from the model including the H relationship matrix 
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Table 4.3: Accuracies and biases of predictions for weekly average daily gain in the low residual 

feed intake line validation dataset with random regression (RR), structured antedependence 

(SAD) and multi trait (MT) models with the pedigree (_A) or the combination of pedigree and 

genomic (_H) relationship matrix. 

RR 

week Cor(y*, EBV)1 Accuracy_A Bias_A Cor(y*, GEBV)2 Accuracy_H Bias_H 

1 0.08 0.11 0.34 0.05 0.08 0.17 

2 0.09 0.14 0.38 0.07 0.11 0.28 

3 0.06 0.13 0.27 0.07 0.12 0.29 

4 0.06 0.11 0.26 0.05 0.13 0.29 

5 0.05 0.10 0.29 0.04 0.09 0.23 

6 0.05 0.09 0.28 0.06 0.12 0.26 

7 0.04 0.07 0.20 0.04 0.08 0.18 

8 0.04 0.07 0.24 0.08 0.15 0.32 

9 0.04 0.09 0.34 0.08 0.16 0.35 

10 0.04 0.09 0.36 0.05 0.11 0.37 

SAD 

week Cor(y*, EBV) Accuracy_A Bias_A Cor(y*, GEBV) Accuracy_H Bias_H 

1 0.07 0.14 0.52 0.08 0.17 0.58 

2 0.08 0.13 0.45 0.09 0.16 0.48 

3 0.03 0.04 0.10 0.10 0.15 0.37 

4 0.04 0.05 0.15 0.10 0.15 0.35 

5 0.04 0.05 0.16 0.08 0.12 0.29 

6 0.04 0.07 0.15 0.10 0.16 0.46 

7 0.05 0.10 0.25 0.10 0.17 0.51 

8 0.05 0.10 0.25 0.09 0.19 0.68 

9 0.04 0.13 0.32 0.06 0.18 0.73 

10 0.08 0.30 1.20 0.07 0.28 0.89 

MT 

period Cor(y*, EBV) Accuracy_A Bias_A Cor(y*, GEBV) Accuracy_H Bias_H 

Week 1 to 3 0.08 0.12 0.33 0.07 0.11 0.33 

Week 4 to 5 0.05 0.09 0.25 0.08 0.12 0.27 

Week 6 to 7 0.05 0.10 0.31 0.08 0.16 0.39 

Week 8 to 10 0.05 0.12 0.42 0.06 0.13 0.32 

Animal model 

 Cor(y*, EBV) Accuracy_A Bias_A Cor(y*, GEBV) Accuracy_H Bias_H 

Whole test 0.19 0.31 0.51 0.26 0.42 0.59 

y* = average corrected phenotypes of genotyped individuals in the validation set using the A relationship matrix; EBV = 

estimated breeding value; GEBV = estimated breeding value from the model including the H relationship matrix 
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Prediction accuracies and bias for RFI 

 

The accuracies and biases of the genetic and genomic predictions are shown in Tables 4 

(Scenario 1) and 5 (Scenario 2). The accuracies were generally lower for RFI than for ADG. 

 

Predicting HRFI pigs (Table 4). Based on the pedigree information, the accuracies ranged 

from -0.03 to 0.32, -0.06 to 0.23, and 0.08 to 0.19 for the RR, SAD and MT models, 

respectively. The HBLUP applied to RFI did not improve these prediction accuracies. 

Conversely, with the RFI over the whole test period, the HBLUP achieved a slightly higher 

accuracy than the BLUP (0.08 vs 0.03).  

 

Predicting LRFI pigs (Table 5). The weekly accuracies varied from -0.16 to 0.14 for all 

models. With the LRFI validation dataset, the HBLUP did not improve the predictions. For the 

first periods, negative accuracies were obtained with MT. Biases for BLUP and HBLUP were: 

-0.44 to 0.57 and -0.65 to 0.13 for RR, -0.19 to 0.34 and -0.47 to 0.11 for SAD, and -0.49 to 

0.12 and -0.29 to 0.22 for MT. In addition, the HBLUP had lower accuracy (0.05 vs 0.07) and 

lower bias (0.22 vs 0.47) when obtained than the BLUP.  
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Table 4.4. Accuracies and biases of predictions for weekly residual feed intake in the high 

residual feed intake line validation dataset with random regression (RR), structured 

antedependence (SAD) and multi trait (MT) models with the pedigree (_A) or the combination 

of pedigree and genomic (_H) relationship matrix.  

RR 

week Cor(y* ,EBV)1 Accuracy_A Bias_A Cor(y* ,GEBV)2 Accuracy_H Bias_H 

1 0.05 0.11 1.25 0.05 0.14 1.10 

2 0.02 0.07 0.65 0.05 0.17   1.14 

3 -0.01 -0.03 -0.13 -0.02 -0.08 -0. 33 

4 0.03 0.13 0.55 0.02 0.09 0.32 

5 0.06 0.22 0.76 0.03 0.12 0.34 

6 0.06 0.21 0.67 0.02 0.08 0.21 

7 0.10 0.32 0.99 0.04 0.15 0.37 

8 0.02 0.04 0.12 -0.01 -0.04 -0.07 

9 0.03 0.08 0.21 0.02 0.06 0.12 

10 0.05 0.10 0.28 0.04 0.09 0.18 

SAD 

week Cor(y* ,EBV) Accuracy_A Bias_A Cor(y* ,GEBV) Accuracy_H Bias_H 

1 0.03 0.04 0.23 0.02 0.03 0.15 

2 0.03 0.07 0.47 0.04 0.09 0.45 

3 -0.02 -0.06 -0.25 -0.02 -0.04   -0.17 

4 -0.00 -0.01 -0.03 -0.01 -0.03 -0.06 

5 0.04 0.10 0.37 0.03 0.08 0.24 

6 0.00 0.01 0.58 0.03 0.07 0.23 

7 0.09 0.23 0.82 0.05 0.11 0.34 

8 0.02 0.04 0.11 0.00 0.00 0.01 

9 0.03 0.06 0.16 0.04 0.07 0.16 

10 0.06 0.12 0.33 0.06 0.12 0.26 

MT 

period Cor(y* ,EBV) Accuracy_A Bias_A Cor(y* ,GEBV) Accuracy_H Bias_H 

Week 1 to 3 0.03 0.08 0.88 0.04 0.12 1.19 

Week 4 to 5 0.03 0.11 0.37 0.01 0.04 0.11 

Week 6 to 7 0.06 0.19 0.64 0.01 0.03 0.17 

Week 8 to 10 0.05 0.10 0.26 0.04 0.09 0.12 

Animal model 

 Cor(y* ,EBV) Accuracy_A Bias_A Cor(y* ,GEBV) Accuracy_H Bias_H 

Whole test 0.02 0.03 0.13 0.04 0.08 0.31 

y*_A = average corrected phenotypes of genotyped individuals in the validation set using the A relationship matrix; EBV = 

estimated breeding value; GEBV = estimated breeding value from the model including the H relationship matrix  
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Table 4.5. Accuracies and biases of predictions for weekly residual feed intake in the low 

residual feed intake line validation dataset with random regression (RR), structured 

antedependence (SAD) and multi trait (MT) models with the pedigree (_A) or the combination 

of pedigree and genomic (_H) relationship matrix.  

RR 
week Cor(y* ,EBV)1 Accuracy_A Bias_A Cor(y* ,GEBV)2 Accuracy_H Bias_H 

1 -0.00 -0.01 -0.05 -0.01 -0.02 -0.08 

2 -0.02 -0.07 -0.44 -0.02 -0.07 -0.39 

3 -0.10 -0.05 -0.26 -0.04 -0.15 -0.65 

4 0.00 0.01 0.04 -0.00 -0.01 -0.07 

5 0.04 0.14 0.57 -0.00 -0.01 -0.03 

6 -0.01 -0.03 -0.09 -0.04 -0.16 -0.38 

7 0.03 0.10 0.36 0.00 0.00 0.00 

8 -0.00 -0.01 -0.02 -0.01 -0.04 -0.08 

9 -0.02 -0.04 -0.12 -0.00 -0.01 -0.02 

10 0.00 0.01 0.02 0.03 0.07 0.13 

SAD 
week Cor(y* ,EBV) Accuracy_A Bias_A Cor(y* ,GEBV) Accuracy_H Bias_H 

1 -0.01 -0.02 -0.08 -0.02 -0.03 -0.12 

2 -0.00 -0.01 -0.05 -0.03 -0.06 -0.28 

3 -0.01 -0.02 -0.10 -0.05 -0.12 -0.47 

4 -0.00 -0.01 -0.04 -0.02 -0.06 -0.24 

5 0.03 0.08 0.34 -0.02 -0.04 -0.13 

6 -0.01 -0.02 -0.06 -0.04 -0.11 -0.28 

7 0.01 0.02 0.07 -0.01 -0.02 -0.06 

8 -0.03 -0.06 -0.19 -0.02 -0.05 -0.11 

9 -0.01 -0.03 -0.08 0.01 0.02 0.04 

10 -0.01 -0.01 -0.03 0.03 0.07 0.11 

MT 
period Cor(y* ,EBV) Accuracy_A Bias_A Cor(y* ,GEBV) Accuracy_A Bias_A 

Week 1 to 3 -0.02 -0.05 -0.49 -0.01 -0.03 -0.24 

Week 4 to 5 0.01 0.03 0.12 -0.02 -0.08 -0.29 

Week 6 to 7 0.002 0.00 0.02 -0.01 -0.02 -0.07 

Week 8 to 10 0.002 0.00 0.01 0.05 0.11 0.22 

Animal model 
 Cor(y* ,EBV) Accuracy_A Bias_A Cor(y* ,GEBV) Accuracy_H Bias_H 

Whole test 0.03 0.07 0.47 0.02 0.05 0.22 
1y*_A = average corrected phenotypes of genotyped individuals in the validation set using the A relationship matrix; EBV = 

estimated breeding value; GEBV = estimated breeding value from the model including the H relationship matrix 
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DISCUSSION 

Genetic parameters for longitudinal ADG and RFI 

Heritabilities for longitudinal measurements were expected to be lower than for the whole test 

period measurement. The heritability estimates for longitudinal ADG in this study were in line 

with other pig studies performed on ADG for whole test period, e.g. 0.37 ± 0.05 [11], 0.48 ± 

0.13 [22], 0.44 ± 0.11 [23]. Despite slightly different curves over time, the estimates were 

relatively similar for the three models for longitudinal ADG. The heritability estimates for 

longitudinal RFI ranged from 0.06 to 0.36, with low heritability for the intermediate stages with 

all models. The heritability estimates of the SAD were higher than those of RR models, in 

particular for early weeks of test, due to the fact that SAD provided higher genetic variances 

and lower permanent environmental variances. These values were in the range of estimations 

from previous studies [0.03 to 0.10 [24], 0.22-0.24 [25], 0.27-0.36 [26]].  

Most studies compute RFI before estimating the variance components in a 2-step approach 

[23,27]. Begli et al. (2016) [28] reported a 1-step approach for estimating the genetic parameters 

for RFI without first calculating the phenotype. It takes a little longer for the animal models to 

converge but this method is more appropriate than the 2-step approach. Generally, the mean of 

heritability estimates for HBLUP were very close to their BLUP counterparts. Heuer et al. 

(2018) [29] also reported a slightly lower heritability estimate for RFI in growing Holstein 

heifers using a HBLUP than with a BLUP approach, but not significantly different.  

In this study, genetic correlations between weeks with SAD and RR were high when weeks 

were close. As reported previously for FCR [10], the SAD model led to positive correlations 

between all time points, whereas the RR model often provided a pattern with a change of 

correlation sign from positive to negative when the distance between weeks increased [10,12]. 

It suggests that the genetic correlation patterns for RR and SAD are to some extent due to the 

specific properties of the models. Negative correlations between the first period and later period 

of test were also obtained with MT. This coincides with RR estimations, even though the MT 

model does not perfectly describe the genetic correlation changes, as i) it assembles multiple 

weeks into periods, ii) it estimates independent fixed effects for the four-period traits.  

Genetic and genomic prediction  

Although the single step genomic models have been recently widely used, most studies focused 

on traits with a single record per animal. Few applied it to longitudinal data. Koivula et al [8] 

performed a single step analysis using random regression in a test-day model in Nordic Red 
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dairy cows.  Kang (2019) [9] performed a single step approach with random regression on 

simulated phenotypes. On pigs, only few genomic predictions of real single record phenotype 

are reported, such as Jiao et al (2014) and Christensen et al (2012), both on growth and feed 

efficiency traits.  

Due to the particular design of our study, when training was run on all G0 to G4 animals of the 

two lines to predict the EBV or GEBV for RFI in the next generations in both lines 

simultaneously, very high correlations between the EBV (GEBV) and corrected phenotypes 

were obtained (results not shown), due to the strong selection applied to the lines [30]. In 

addition, as shown by Mauch et al (in prep.) the genomic content of the advanced generations 

heavily evolved due to combination of drift and selection, shaping very contrasted genomes in 

the latter generations. To circumvent this specificity, training on both lines and validating the 

prediction in each line separately was retained.  

Slightly higher accuracies were yielded with HBLUP for the SAD model on ADG. Other 

models and traits did not show improvement of the accuracies due to genomic prediction. 

However, the accuracies were generally low, which is close to estimates in Jiao et al. 

(2014)[23], who reported an accuracy of 0.24 for ADG in Duroc pigs using one-record single 

step models. Christensen et al (2012) [31] reported higher accuracies of 0.35 for single record 

ADG with the GBLUP approaches than with a BLUP. However, in our study the bias was not 

systematically improved by the genomic approach for these models, the biases closer to 0.5 

being with the A matrix with RR on the HRFI line and the H matrix with SAD on the LRFI 

line. However, consistent advantages of the H matrix on the predictions biases have been 

reported with the single step approach using random regression models [8]. The change of bias 

in MT due to the H matrix was not considerable, and similarly for ADG for the whole test. The 

advantages of the genomic approach for RFI were even lower and less consistent across 

validation sets. The accuracies were generally lower than for ADG, as reported by Jiao et al. 

(2014) [23] with an accuracy of 0.09 for RFI and 0.11 for FCR on Duroc pigs. Christensen et 

al. (2012) [31] reported slightly greater accuracies of 0.19 and 0.21 for RFI with genomic 

approaches in another Duroc population. In chicken, Begli et al. (2017) [28] reported that the 

accuracies (with pedigree information) for longitudinal RFI ranged from -0.11 to 0.33, and that 

GBLUP using high-density SNP did not improve EBV prediction for this trait. In our study, 

some weekly accuracies were also negative with both A and H matrices for RFI. This suggests 

a poor predictive ability of the longitudinal models for some time points for RFI.  
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Finally, for RFI over the whole test period, the prediction accuracy of HBLUP was slightly 

higher than those of BLUP for the HRFI validation dataset, whereas for the LRFI validation 

set, there was no benefit from using HBLUP, with no clear putative explanation.  

The prediction accuracy of the single step approach mainly depends on the heritability of the 

trait, the number of phenotype records in the training population, the connectedness between of 

the training and validation dataset, the linkage disequilibrium between the SNP and the QTL 

affecting the trait, and also the genomic relationship and effective number of SNP markers 

[23,32]. The difference between accuracies for ADG and RFI could be explained by the fact 

that RFI has a lower heritability than ADG, and that the number of QTL detected for RFI is 

generally low (see Gilbert et al 2017 [30], for instance). Our limited accuracies, sometimes 

negative for RFI, could also result from the structure of the population used: a divergent 

selection experiment on RFI with two separated lines [11], in which the number of animals of 

each generation is limited, as well as the number of genotyped animals (17% of the population) 

and so the size of the validation set. Finally, among the 660 genotyped animals, only 90 animals 

had both genotyped and phenotypes, so we computed average progeny-based corrected 

phenotypes for genotyped individuals of the validation sets to increase the accuracies. On the 

other hand, the pedigree is well structured, all the animals within a line have a high level of 

connectedness with the others, and the number of phenotyped animals is high enough to provide 

good accuracies of the EBV of their genotyped parents. Ultimately, predicting longitudinal RFI 

seemed more difficult than predicting longitudinal ADG. From earlier studies of these 

populations (see Gilbert et al, 2017 for a review), it has been shown that ADG showed no 

correlated response to selection on RFI, whereas RFI was the main responding trait. Indeed, the 

genomic structure of the lines [11], which differentiated due to selection but also due to drift 

[33], could disadvantage prediction for the selection criterion. As a result, we can hypothesized 

that results obtained on ADG, which is certainly less affected by our design, are closer to real 

situations in which responses to selection are distributed on multiple traits thanks to multitrait 

indexes. Under this hypothesis, HBLUP seemed to improve the genomic accuracies of the 

longitudinal models. On the other hand, we can suggest that predicting EBV in one population 

with very divergent phenotypes compared to the training population might be difficult, or at 

least require extended numbers of genotypes and phenotypes to capture most of the available 

variability in the training population.  

Longitudinal models have been implemented in animal breeding over the last 20 years, and the 

single step approach has been used from 2010, but reports of the combination of both are scarce. 

Some study showed that including the genomic information improved reliability on real data in 
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cattle [8] and on simulated data [9]. No genomic prediction study is available on pig repeated 

measurements for comparison. Altogether, the prediction accuracies of weekly (G)EBV were 

reduced compared to accuracies of single records models, as a result of the model complexity. 

However, compared to Jiao et al (2014) [23] and Christensen et al (2012) [31], the accuracies 

for weekly ADG remained in the range of values they obtained for the different studied traits. 

Finally, previous studies of longitudinal traits with genomic models used random regression 

models for single step evaluation. In our study, we tested the SAD model in a genomic context 

for the first time, as an alternative approach. The SAD is interesting because it requires fewer 

parameters than the RR model.  

 

CONCLUSION 

Among all models, SAD provided the best fitted data model for both ADG and RFI. The study 

also confirmed that low predictive accuracies are obtained in pig populations compared to cattle 

situations. The situation of a divergent selection experiment seemed to worsen the accuracies 

for the traits heavily responding to selection: the single step approach improved the genomic 

prediction for ADG in some cases, but this was not observed for RFI.  
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Chapter 5 - IMPACT OF THE DIVERGENT SELECTION FOR 

RESIDUAL FEED INTAKE ON THE GENETIC 

TRAJECTORIES OF RESIDUAL FEED INTAKE AND FEED 

CONVERSION RATIO 

 

  



 
 

91 
 

During this thesis, we tested different longitudinal models on a population with a particular 

genetic structure, Large White pigs divergently selected for RFI. This selection could enhance 

the changes of trait dynamics in response to selection. We thus evaluated if the divergent 

selection for RFI on the entire test period affected the genetic profiles of feed efficiency, FCR 

after the study presented in chapter 3, and RFI after the study presented in chapter 4.  

In both cases, the (G)EBV of longitudinal models were averaged per line and generation to 

show the changes of dynamics with selection. The work on FCR using the RR model and the 

pedigree information only was presented as a poster at the 11th World Congress on Genetics 

Applied to Livestock Production (WCGALP), Auckland, NZ (2018), and was completed with 

results from the SAD model. The study on changes of longitudinal RFI with selection took 

advantages of the outputs of RR, SAD, and MT models, using genetic and genomic EBV.  
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5.1. Impact of the divergent selection for RFI on longitudinal FCR  

As shown in the introduction of this manuscript, FCR strongly correlates with RFI at the level 

of the test period. It suggests that selection for RFI would affect FCR profiles during growth.  

 

5.1.1. Using RR-OP models 

Based on the outputs of the RR-OP models presented in article II (chapter 3), this study 

investigated the changes of EBV patterns for FCR of the animals undergoing a divergent 

selection for RFI.  

 

(Article III: Huynh-Tran, V. H., David, I., Billon, Y., Gilbert, H. (2018). Changes of EBV 

trajectories for feed conversion ratio of growing pigs due to divergent selection for residual feed 

intake. In: Proceedings of the 11th World Congress on Genetics Applied to Livestock 

Production (p. 513). Presented at 11. World Congress on Genetics Applied to Livestock 

Production (WCGALP), Auckland, NZL (2018-02-12 - 2018-02-16). NZL: Massey University. 
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Summary

The objective of this paper was to study the estimated breeding values (EBV) profiles for 
feed conversion ratio (FCR) over the growing period in eight generations of divergent selection 
for Residual Feed Intake (RFI) in Large White pigs. Data comprised 11790 weekly FCR 
collected on 1186 boars during a 10 week-period. A random regression model was used to 
estimate 10 week EBVs per animal. Then, the individual EBV trajectories were classified into 
subgroups using a k-means approach with a Euclidean distance. The responses to selection in 
the divergent lines (LRFI= low RFI; HRFI= high RFI) on the FCR dynamics were evaluated. 
On the one hand, the average weekly EBV over time per line and generation were considered; 
on the other hand the first two summarized breeding values (SBV1 & SBV2, representing the 
slope and the mean of the EBV curves, respectively) were computed for each individual from 
the eigendecomposition of the genetic covariance matrix between time points, and they were 
averaged for each line and generation. The results showed that individual EBV trajectories for 
FCR were classified into three distinct subgroups. These groups corresponded to early 
generations, late LRFI generations, and late HRFI generations, respectively. The more efficient 
pigs had smaller initial value of FCR and smaller slope of the EBV than less efficient pigs. The 
changes in SBV1 and SBV2 corroborated the evolution of the EBV curves for each line and 
generation. Further examination pointed out changes in the dynamics of growth rates associated 
to these responses. This study showed that selection for feed efficiency affected the dynamics 
of FCR during growth. 

Keywords: longitudinal data, pigs, divergence selection, feed efficiency, residual feed intake

Introduction 

Improving feed efficiency of pigs contributes to increased profitability of pig farming as well 
as reduction of its negative impacts on the environment (Patience et al. 2015, Gilbert et al. 
2017). Feed conversion ratio (FCR = daily feed intake/average daily gain) and residual feed 
intake (RFI; difference between observed feed intake and expected feed intake for maintenance 
and production requirements) are two measures of feed efficiency. The RFI permits to select 
animals that consume less without affecting growth traits. Selection for RFI has resulted in an 
improvement of FCR at the phenotypic and the genetic levels (Gilbert et al., 2017). However,
little is known about the effect of selection on the dynamics of feed efficiency over the growing 
period. The analysis of repeated records can improve estimations in a genetic selection context 
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for feed efficiency compared to simple trait analyses (Boligon et al., 2011). With the 
development of automatic self-feeders, individual feed intake and body weight values (and thus 
FCR) can be measured repeatedly during the growing period in groups of animals. For RFI, 
records require measurement of body composition to evaluate production requirements 
variability due to differences in protein/lipid distribution, which is usually not measured
repeatedly. To evaluate the impact of selection for RFI on the dynamics of feed efficiency 
during growth, we studied the evolution of the estimated breeding values (EBV) profiles for
FCR in divergent lines for RFI. 

Material and methods 

Pigs and data collection

The present study includes data from 1186 growing Large White boars over 8 generations
raised after weaning in the Rouillé INRA experimental farm (GenESI, Vienne, France). From 
the initial generation (G0), the lines were divergently selected for RFI to produce animals with 
low RFI (LRFI, corresponding to more efficient animals) and high RFI (HRFI, corresponding
to less efficient animals). The genetic selection process has been described in details by Gilbert 
et al. (2007). Pigs were tested during the growing-finishing period from 67 ± 1 day (25 ± 4 kg) 
to 168 ± 13 days (115 ± 11 kg). They had individual measurements for body weight (BW)
every week and for feed intake (FI) every day. From the 14-week test, weekly FCRs were
calculated according to Huynh-Tran et al. (2017a), resulting in 11790 weekly FCR values over 
10 weeks. A total of 3986 animals were included in the pedigree.

Statistical analyses

The 10 repeated measurements of FCR were analyzed using a random regression model with 
polynomial of order 2 for both genetic and permanent environmental effects. The fixed effects 
included in the model were the week of observation (10 levels), the pen within batch (96 levels), 
the batch of birth (32 levels), the age and BW of the animal at the beginning of the test.
Covariance components and breeding values were estimated by the restricted maximum 
likelihood (REML) method using the ASRemL software (Gilmour et al., 2009). 

As a result of the genetic models, we obtained 10 weekly EBVs for FCR per animal. The 
patterns of EBV changes over time were then described using a trajectory classification 
approach that classified animals into different trajectory groups using a k-means approach with 
a Euclidean distance (Genolini et al., 2015). This trajectory classification was proposed to 
visualize the changes of animal profiles as a result of the selection on RFI. Next, the 10-EBVs
vector for each animal was summarized in a reduced number of independent summarized 

breeding values (SBV). For animal i, was obtained by multiplying the pth eigenvector

of the eigendecomposition of the estimated genetic covariance matrix between times (G) with 
the vector of 10 week EBVi. As shown in Huynh-Tran et al. (2017b), SBV1 and SBV2 are
related to the slope and mean of the EBV curves, respectively. SBV1 and SBV2 were averaged 
per line and generation to assess the evolution of the dynamics of weekly EBV for FCR in 
response to selection for RFI. 
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Results and discussion

The trajectory classification approach identified three subgroups of individual EBV 
trajectories, as shown in Fig. 1. The first group consisted in a low initial value and continuous 
increase over time with a weak slope (35.4 % of the pigs, group noted A). The second group 
also reflected an increase of the EBV over time but with a steeper initial slope and higher initial 
value (34.6% of the animals, group noted B). The last EBV trajectory pattern reflected a 
constant EBV over time (30.0% of the animals, group noted C). This classification is strongly 
related with the selection for RFI : the EBV trajectories of the animals from the first three 
generations belonged to group C, pigs from generations 4 to 7 of the LRFI line belonged to 
group A, and animals from generations 4 to 7 of the HRFI line to group B (Fig. 1). These results 
suggested that selection for RFI strongly impacted the FCR curves during the test. Altogether, 
the FCR curve shapes supported that pigs are more efficient to convert feed into meat at the 
earlier ages than at the end of the test as previously reported by Shirali et al. ( 2012).

Figure 1. Mean EBV trajectories per line and generation obtained with a random regression 
model during the test for the RFI lines. The solid green lines (group C) are the EBV trajectories 
of pigs from generations G0, G1, G2, the dotted blue lines (group A) are the EBV trajectories 
of pigs from generations G3 to G7 of the low RFI line; the dotdashed red curves (group B) are 
the EBV trajectories of pigs from generations G3 to G7 of the high RFI line. The bold lines are 
the mean curve of group A, B and C, respectively. 

To better describe how selection for RFI affected the FCR trajectory, changes in SBV1 and 
SVB2 per line and generation are presented in Fig. 2. The SBV2, which is strongly correlated 
to the mean of EBV trajectories (0.96, Huynh-Tran et al, 2017b) quasi-linearly decreased for 
LRFI line (from -0.13 for G1 to -0.51 (kg feed/kg gain) for G7) and increased for HRFI line 
(from 0.015 for G1 to 0.17 for G7). This result was in line with the study of Gilbert et al. (2017) 
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that reported significant response to selection on FCR over the whole test-period in these lines.
The SBV1, associated with the slope of the EBV trajectories (Huynh-Tran et al, 2017b), 
increased from G0 to G5, then decreased until G7 for LRFI line. Meanwhile, SBV1 increased 
from G0 to G4, then slightly decreased from G5 to G7 for the HRFI line. As a result, slopes of 
the FCR curves remained similar between lines until G3, then the slopes started diverging , the 
decrease of feed efficiency with time being higher in the HRFI line in comparison with the 
LRFI line. These results show that selection for RFI impacted the FCR curves during the test. 
Since FCR is a ratio, differences in changes in FCR over time between lines maybe related, as 
suggested by Saintilain et al. (2015), to differences between lines in changes in FI, ADG or 
both. 

Figure 2 : Change of the summarized breeding values during 8 generations (G0 to G7). 
SBV1_LRFI (SBV1_HRFI), SBV2_LRFI (SBV2_HRFI): first and second summarized 
breeding values for feed conversion ratio (FCR) obtained from the genetic covariance matrix 
G with a random regression model for the low residual feed intake line (LRFI)(high residual 
feed intake line (HRFI)).

So, to further understand the differences in FCR curves between lines, the phenotypic FI and 
ADG curves were also examined per line and generation (results not shown). We observed the 
same shape of FI curve over time for both lines, with a change of magnitude due to the 
generations (LRFI pigs eating less feed every week than HRFI pigs). For ADG, the pattern of 
the ADG curves changed with the selection. The ADG curves of the first three generations (G0 
to G2) were similar for both lines. From G3, the ADG patterns changed between lines. The 
LRFI pigs had a lower growth rate for the earlier periods and higher growth rate for the later 
period than the HRFI pigs. A similar difference was reported at the phenotypic level by Saintilan 
et al. (2015), who reported faster growing animals in the less efficient group at the beginning 
of the test, and faster growing animals in the more efficient group at the end of the test-period. 
It has been shown that this difference in growth rate is associated with difference in lipid to 
protein deposition ratio between the divergent RFI lines (Gilbert et al., 2017), resulting in 
increased leanness in the LRFI pigs. 
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Conclusion

This study showed that selection based on RFI had an impact on the dynamics of the FCR 
over time. 
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5.1.2. Changes of FCR profiles with the SAD approach  

The previous study with the RR model revealed that selection for RFI affects the change of 

FCR overtime at the genetic level. With the SAD model, similar patterns of EBV per generation 

as with the RR model were obtained in each line (Fig. 5.1). They were not as smooth, which 

reflects the properties of the models.  

 

Figure 5.1. Mean EBV trajectories per line and generation obtained with a structured 

antedependence model (SAD 122/122 for genetic random and permanent environmental 

effects, respectively) during the test for the RFI lines. The solid green lines (group C) are the 

EBV trajectories of pigs from generations G0, G1, G2, the dotted blue lines (group A) are the 

EBV trajectories of pigs from generations G3 to G7 of the low RFI line; the dot-dashed red 

curves (group B) are the EBV trajectories of pigs from generations G3 to G7 of the high RFI 

line. The bold lines are the mean curve of group A, B and C, respectively.  
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5.2. Genetic (EBV) and genomic (GEBV) trajectories of longitudinal residual 

feed intake 

5.2.1. Data and statistical models  

Data and statistical models for the RR, SAD and MT approaches were presented in chapter 4.  

To examine the impact of selection for RFI during the test on the RFI trajectories, the averages 

of the weekly (G)EBV per combination of generation and line were computed from the results 

of the pedigree-based animal models and the single step models applied to the full population. 

5.2.2. Results: RFI trajectories 

The resulting averaged trajectories for (G)EBV for each line and generation combination are 

presented in Figure 5.2 for the longitudinal models RR, SAD and MT. To ease readiness, the 

profiles of the G0 population were set to zero, and other profiles are presented as deviations 

from the G0 population. 

In general, the EBV and GEBV trajectories were quite similar. The trajectory patterns were 

smoother with RR than with SAD and MT, due to the nature of the covariance structure. The 

LRFI curves were below the G0 line, and the HRFI curves were above the G0 line, reflecting 

the changes in RFI average levels due to selection. For HRFI, on average the (G)EBV increased 

from the week 1, reached a peak at week 7 or 8 and then decreased until the end of the test, but 

not to the initial level. This pattern was amplified in the advanced generations compared to the 

earlier generations of selection, with differences between weeks reaching more than 500g/d in 

the last HRFI generation between week 1 and week 7. Conversely, the (G)EBV patterns of 

LRFI animals had opposite shapes, from flat to low and convex as selection continued. 

Additionally, the difference depending on the weeks was lower than in the HRFI line, as if the 

selection pressure moved the full trajectory towards lower values.  

Thus, selecting for RFI at the level of the test heavily affected the dynamics of longitudinal 

RFI. This effect seemed more pronounced in the HRFI line.  
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Figure 5.2. Mean RFI (G)EBV per line and generation obtained with a random regression 

(RR), structured antedenpence (SAD) and multi trait (MT) model for the low RFI (Gx-) 

and high (Gx+) RFI lines on weekly records, using pedigree-based (EBV, left) or H-based 

(GEBV, right) relationships matrices. The solid green lines are the trajectories of G0 

animals, centered to zero; the blue dotted lines are the trajectories of pigs from generations 

G1 to G7 in the low RFI line; the red dotted-dashed curves are the trajectories of pigs from 

generations G1 to G7 in the high RFI line. 
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RR  

SAD 

MT MT 



 
 

101 
 

5.3. Discussion of the impacts of selection for RFI on the feed efficiency 

profiles during growth  

These two analyses showed that selection based on RFI has an impact on the dynamics of the 

feed efficiency over time. Further studies in relation with the dynamics of the other major 

production traits might help to understand the levers explaining these changes of trajectory and 

how they contributed to the changes of the test RFI. Now that the EBV patterns are described, 

it would be interesting to consider how to select animals for feed efficiency based on the 

available longitudinal information (including EBV profiles, SBV, genetic correlations with 

other traits, etc.). In practice, the individual genetic patterns can be captured into few 

parameters, as we proposed the use of SBV as a criterion for animal selection. Another approach 

would be to use a function to summarize the phenotypic profiles into parameters, such as 

Gompertz performs on BW, and then work on these parameters to select animals with desired 

profiles. However, before using longitudinal EBV for animal selection, the costs and expected 

genetic gains on the different components of the objective of selection should be compared 

between a selection based on one EBV and one based on longitudinal EBV.  
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5.4. Conclusion 

This study showed  

i. The changes of EBV patterns for FCR over time for each line-generation 

combination in a divergent selection experiment for RFI. This proved that selection 

for RFI has an impact on the dynamics of FCR at the genetic level.  

ii. Similar evolutions of EBV and GEBV for longitudinal RFI over time.  

Altogether, the current study confirmed that the selection for RFI has an impact on the dynamics 

of longitudinal feed conversion ratio and residual feed intake.  
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Chapter 6 - GENERAL DISCUSSION AND PERSPECTIVES 
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This thesis succeeded in  

1. Proposing a linear interpolation to deal with missing weekly body weights, and thus 

improve the genetic evaluation for feed conversion ratio.  

2. Demonstrating the advantages of the SAD models for different traits of large economic 

importance in pigs (feed conversion ratio, residual feed intake and average daily gain). 

3. Deriving a selection criterion that can be applied to any model analyzing repeated data, 

providing that covariance structures are estimated. 

4. Showing the impact of selection for feed efficiency at the level of the test period on feed 

efficiency trajectories. 

5. Estimating the accuracy of RFI and ADG prediction for longitudinal data using genomic 

information.  
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6.1. Divergent selection for RFI 

As mentioned in the previous chapters, selection for RFI improves feed efficiency with limited 

impact on growth. A divergent selection for a trait creates a rapid response to selection, which 

allows evaluating the direct and correlated responses to a criterion for selection (Gilbert et al., 

2017). As a counterpart, divergent selection presents some limits such as: i) confounding the 

results from genetic drift and responses to selection (Gilbert et al., 2017), ii) promoting a 

restructuration of the genetic variance in the selected population (Melo and Marroig, 2015), iii) 

changing the physiology of the individuals potentially to extreme extents, and iv) modifying 

the genetic patterns on other traits (Huynh-Tran et al., 2017).  

All results presented in this thesis were obtained on pig lines divergently selected for RFI, a 

population with a particular genetic structure. Consequently, it could affect some of the results 

obtained. For addressing this issue, we compared when available our results for each trait, such 

as longitudinal variance components, to studies on other populations, most being obtained on 

non-divergent populations. For instance, the heritability estimates for FCR and ADG were in 

accordance with those obtained on Duroc in Hoque et al. (2009) and Jiao et al. (2014), and on 

commercial crossbred Large White (Godinho et al., 2018). The genetic parameters for RFI were 

in line with those reported on a Large White population selected for growth rate on restricted 

feeding (Nguyen et al., 2005). Thus, it is reasonable to extend our variance component 

estimations to different populations and to conclude that the estimations of the variance 

components were not affected by the divergent selection.  

However, from the fourth chapter we can suspect that genomic prediction in such small lines 

heavily submitted to drift requires more data and/or additional effects to allow an accurate 

prediction of the selected traits. This especially questions the opportunity of genomic prediction 

across distant lines of limited sizes and different performance levels, in which drift heavily 

structured the genomes. Further studies would be needed to explore this limit. 

  



 
 

106 
 

6.2. Develop a SAD multiple traits model for residual feed intake 

Genetic parameters of RFI were estimated from RFI phenotypes or estimated from ADFI 

analyses in which ADG, BFT, and AMBW were considered as covariates. Two assumptions 

were made during these analyses: the partial coefficients of ADG, BFT and AMBW are 

constant over time, and they are the same for the genetic and environmental components of 

each covariate. Cai et al. (2011) found that the partial coefficients of BW changed over time on 

pigs from a divergent selection experiment on RFI at Iowa State University. We tested this 

hypothesis on our data and found no significant interaction between the partial coefficient and 

the week of observation. However, we did not investigate if they were the same for the genetic 

and environmental components. Applying a multiple trait SAD model (David et al. 2017) on 

ADFI, ADG, AMBW, and BFT would allow testing this hypothesis. In brief, the multiple-trait 

SAD model would be the following for animal i at time tj:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i

i

i

i

i j ADG j ADGi j ADGi j

i j AMBW j AMBW i j AMBW i j

i j BFT j BFT i j BFT i j

i j FI j FI i j FI i j

ADG t t u t p t

AMBW t t u t p t

BFT t t u t p t

FI t t u t p t









= + +

= + +

= + +

= + +

 

where effects included in the fixed part 
( )i jt

are the combination of the fixed effects of each 

trait. The random effect functions for genetic and permanent effects for ADG, AMBW and BFT 

will be according to a “classical” SAD model (i.e. regression on preceding observations), while 

for ADFI regression on ADG, AMBW and BFT will be included in the model in order to obtain 

genetic and permanent effects for RFI:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

FIFI j ADG j AMBW j BFT j

FIBFTFI j ADG j AMBW j

FI j FI j ADG j AMBW j BFT j u jt t t t

' ' ' ' '

FI j FI j ADG j AMBW j BFT j p jtt t t

u t u t u t u t u t t

p t p t p t p t p t t

    

    

 = − + + + +



= − + + + +


  

in which 
( )FI jt

 , ( )
FIu jt  are the antedependence parameters and error term for the genetic 

random function of ADFI at time jt ; ( )ADG t
 , 

( )AMBW jt
 , 

( )BFT jt
  are the cross antedependence 

parameters of time jt linking genetic components of ADFI to those of ADG, AMBW and BFT, 

respectively. Similarly, 
( )FI j

'

t
 , ( )

FI

'

p jt , 
( )ADG j

'

t
 , 

( )AMBW j

'

t
  , 

( )BFT j

'

t
  are the counterparts of 

permanent environmental effects.  
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Given that by definition residual feed intake is the feed intake corrected for ADG, AMBW and 

BFT, we can estimate the genetic and permanent effects for residual feed intake as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1

FIADG j AMBW j BFT j FI j

FIBFTADG j AMBW j FI j

RFI j FI j ADG j AMBW j BFT j u j FI jt t t t

' ' ' ' '

RFI j FI j ADG j AMBW j BFT j p j FI jtt t t

u t u t u t u t u t t u t

p t p t p t p t p t t p t

    

    

 = − − − = + −



= − − − = + −


 

The advantage of such model is to be much more flexible than those considering same 

regression coefficients for the genetic and environmental effect of ADG and BFT on ADFI. 

This one-step model should provide the best estimate for longitudinal analysis of RFI. 

Unfortunately, due to time constraints this model could not be tested in the frame of this thesis. 

It is one of the main model development perspectives to envisage for the longitudinal analysis 

of this trait. 
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6.3. Genomic prediction accuracy 

The prediction accuracy depends on many factors such as the nature of the trait, the quality of 

the model, the size of the training dataset and of the validation dataset, as well as the 

connectedness between them. In chapter 4, we showed that the use of a single step approach 

with longitudinal data yielded an improved genomic accuracy for ADG but not for RFI. This 

could be explained by the structure of the current dataset, with two lines under divergent 

selection for RFI, but with no divergence for ADG. To improve the prediction accuracy in such 

circumstances, there are many questions related to the choice of the training population 

regarding to the validation population (Guo et al., 2014). Specifically, the number of individuals 

in each training and validations sets, and the relatedness between them are main factors that are 

reported as affecting the prediction accuracy. The impact of genetic drift differentiating 

populations when using multi-population prediction has been less explored, and could be an 

extension to this study. The genomic prediction accuracy is also affected by the trait heritability 

and marker density. Altogether, these potential impacts of the structure of the population 

suggest testing the single step approach for RFI on other populations not under a divergent 

selection for RFI, with increased size of the training and validation datasets. In addition, 

because the RFI lines have now more generations available with genotypes, the study could be 

repeated on an extended number of individuals genotyped to evaluate the relative impact of 

these different factors in our results. Additionally, testing the single step for RFI on other 

populations (not under a divergent selection for RFI) with increased size of training dataset, a 

validation dataset “large” enough, and with high-density markers, could be conducted in the 

future. For instance, repeated measurements of ADG and ADFI are available in commercial pig 

populations evaluated in the test station in Le Rheu, on about 2000 pigs per year. 

 

Finally, more recent approaches proposed in the literature could improve the prediction 

accuracy, such as weighted single step or weighted Bayesian single – step, in which potential 

markers of interest are determined before applying the models and given a different weight in 

the models. However, these methods are ideal for traits with few associated markers. In the case 

of RFI, most studies reported a large number of SNPs contributing to the genetic variance of 

RFI (Onteru et al., 2013; Gilbert et al, 2017). Thus, the application of weighted single step 

might lead to limited improvement of the accuracies.  
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6.4. Animal selection based on the genetic trajectory 

In chapter 3, with SAD model, we demonstrated that it is possible to obtain “enough” 

information with a reduced test period compared to the test over a 10 week-period. However, 

the number of records and distance between the measures should be investigated in relation 

with the objectives of each breeding program.  

 

Figure 6.1. An example of using Support Vector Machines (SVM) to establish the boundaries 

of the trajectory profiles for all individuals, obtained on the joint distribution of their first and 

second summarized breeding values (SBV) for the structured antedependence model 

(SBV_SAD1, SBV_SAD2) In this plot, the “×” are the points directly affecting the 

classification line, so called support vectors. The “o” points do not affect the determination of 

the boundaries.  

 

The number of EBV obtained for each animal from the longitudinal analysis is equal to the 

number of time points considered. Until now, there have been several options for animal 

selection based on longitudinal data. First, using the mean or sum of the predicted EBV over 

time is an option which is often used for the lactation curve in cattle. The second option is to 

exploit the whole EBV trajectory and to determine groups of EBV profiles (Savegnago et al., 

2016). The best group of individuals have to be identified after a trajectory classification. Once 
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groups of animals are distinguished, boundaries between the classes can be determined, for 

instance using a Support Vector Machines (SVM) approach (Winters-Hilt and Merat, 2007). 

The principle of SVM is to maximize the total distance between the line (boundary) and the 

closest points in each class. Figure 6.1 presents the results of an SVM approach applied to the 

trajectory classification based on the EBV obtained with the SAD model for FCR (paper II). It 

shows that the classification without a priori on the feed efficiency level of the animals nicely 

separates out the pigs in different groups.  

 

A third option to obtain a criterion to select animals is to compute a total breeding value that 

corresponds to a linear combination of the weekly EBV. The weights for each week could 

derivate from an economic study, or from the genetic covariance matrix as proposed in Huynh-

Tran et al. (2017b). The objective of including different weights to blend the genetic trajectory 

should optimize selection and achieve breeding goals faster. However, because we showed that 

selection for feed efficiency can impact the trajectory patterns of the future generations, the 

weight of each EBV should be regularly investigated to ensure appropriate responses to 

selection. Finally, if SBV or other linear combination of longitudinal EBV were used as 

selection criteria for animal breeding, their accuracy should be evaluated. Given that they are 

linear combinations of EBV of known accuracy, a derivation for the SBV could be proposed 

with an equivalent formula for quantifying the prediction accuracy as that usually used in 

evaluation of the accuracy in EBV prediction. 

 

The individual EBV trajectories obtained with RR models can be described by polynomials 

functions, as defined by the model. The individual trajectories of other models are by essence 

less smooth, but they could also be modelled with polynomial functions. If a function was 

available, we could summarize the EBV of each animal in a simple function with limited 

number of parameters, particularly in cases with large number of time points per animal. 

However, compared to summarized breeding values, this approach would potentially capture 

all the changes of the trajectories without selection of the useful ones (Huynh-Tran et al., 

2017b). Thus, it would require thorough evaluation to avoid undesired responses to selection.  

The combination of trajectories of different traits is finally a more ambitious possibility. It could 

allow joint improvement of several criteria at once, resulting in faster achievement of multiple 

goals.   
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TRAINING COURSES AND SEMINARS 

Training courses 

✓ Programming C++ (28h) 

✓ Ecole international de recherche-Agreenium (EIR-A) (3 days, 2017, Rennes) 

✓ Ecole international de recherche-Agreenium (EIR-A) (5 days, 2016, Montpellier) 

✓ CSAGAD, quantitative genetics courses (sessions 1+2), AGROPARISTECH, Paris 

✓ Inkscape (1/2 day) 

✓ Advance quantitative genetics for animal breeding course by Pr. Toro (GenPhySE, 2017) 

(28h) 

✓ English for scientific presentation (Toulouse, 2016) (28h) 

✓ Scientific French (28h) 

 

Seminars  

✓ Doctoral seminar of Animal Genetic Division, INRA, Toulouse (2 days, March 2016) 

✓ Doctoral seminar of Animal Genetic Devison, INRA, Rennes (2 days, May 2017) 

✓ Doctoral seminar of Animal Genetic Devison, INRA, Les Mureaux (2 days, May 2018) 

✓ Doctoral school seminar SEVAB 2016 

✓ Doctoral school seminar SEVAB 2017 

 

International collaboration  

USA: Animal genetics department, Iowa state university (from Nov 2017 to Feb 2018) 

Supervisor:  Dr. Jack C.M. Dekkers  

Project: “Pedigree and genomic predictions of longitudinal data”  
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