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Genetic structured antedependence and random regression models
applied to the longitudinal feed conversion ratio in growing Large White pigs1
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ABSTRACT: The objective of the present study
was to compare a random regression model, usually
used in genetic analyses of longitudinal data, with the
structured antedependence (SAD) model to study the
longitudinal feed conversion ratio (FCR) in growing
Large White pigs and to propose criteria for animal
selection when used for genetic evaluation. The study
was based on data from 11,790 weekly FCR measures
collected on 1,186 Large White male growing pigs.
Random regression (RR) using orthogonal polynomial
Legendre and SAD models was used to estimate genet-
ic parameters and predict FCR-based EBV for each of
the 10 wk of the test. The results demonstrated that the
best SAD model (1 order of antedependence of degree
2 and a polynomial of degree 2 for the innovation
variance for the genetic and permanent environmental
effects, i.¢., 12 parameters) provided a better fit for the
data than RR with a quadratic function for the genetic
and permanent environmental effects (13 parameters),
with Bayesian information criteria values of —10,060
and —9,838, respectively. Heritabilities with the SAD

model were higher than those of RR over the first 7 wk
of the test. Genetic correlations between weeks were
higher than 0.68 for short intervals between weeks
and decreased to 0.08 for the SAD model and —0.39
for RR for the longest intervals. These differences in
genetic parameters showed that, contrary to the RR
approach, the SAD model does not suffer from border
effect problems and can handle genetic correlations
that tend to 0. Summarized breeding values were pro-
posed for each approach as linear combinations of the
individual weekly EBV weighted by the coefficients
of the first or second eigenvector computed from
the genetic covariance matrix of the additive genetic
effects. These summarized breeding values isolated
EBYV trajectories over time, capturing either the aver-
age general value or the slope of the trajectory. Finally,
applying the SAD model over a reduced period of
time suggested that similar selection choices would
result from the use of the records from the first 8 wk of
the test. To conclude, the SAD model performed well
for the genetic evaluation of longitudinal phenotypes.
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INTRODUCTION

Feed efficiency is a benchmark for profitability in
pig farming because the cost of feed represents about
two-thirds of total production costs. It also reduces
the negative effects of livestock farming on the envi-
ronment (Patience et al., 2015; Gilbert et al., 2017).
With the development of automatic equipment, indi-
vidual feed intake (FI) and BW values can be repeat-
edly measured during the production period in some
species. The analysis of repeated records can provide
more accurate estimations in a genetic selection con-
text than simple trait analyses (Boligon et al., 2011).
To analyze such longitudinal data, genetic models
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should account for the covariance structures of the re-
peated records with few parameters to estimate. The
random regression (RR) model is widely used, even if
it presents various drawbacks such as higher variances
at the beginning and the end of the studied period, so-
called border effect problems (Jaffrézic et al., 2004,
Meyer, 2005). The structured antedependence (SAD)
model also deals with the correlation structure of data
and has been shown to better fit covariance structures
than RR models (Jaffrézic and Pletcher, 2000; Jaffrézic
etal., 2004; David et al., 2015). Up to now, it has been
less widely used than the RR model due to the lack
of tools; however, user-friendly software (David et
al., 2017) is now freely available (https://zenodo.org/
record/896377; accessed 20 Sep. 2017). For selection
purposes, an interpretable eigenvalue decomposition
of the additive genetic matrix K of the RR coeflicients
of the RR model has been proposed to summarize the
individual genetic potential over time as 1 or 2 values
(Van Der Werf et al., 1998), capturing features such
as persistency or area under the curve when applied
to lactation curves (Togashi and Lin, 2006). To our
knowledge, no methods for summarizing breeding
values from the SAD model have yet been proposed.
The objective of our study was to compare RR and
SAD models for the genetic analysis of repeated mea-
sures of the feed conversion ratio (FCR) in growing
pigs and to propose criteria for animal selection for
the SAD model.

MATERIAL AND METHODS

Data were collected in accordance with the applica-
ble national regulations on livestock welfare in France.

Pigs and Data Collection

The present study includes data from 1,186 Large
White boars over 8 generations of divergent selection
forresidual FlI raised after weaning in the Rouillé INRA
experimental farm (GenESI, Vienne, France). The se-
lection process was described in detail by Gilbert et al.
(2007). The data used were collected from candidate
boars tested in groups of 12 in pens equipped with
single electronic feeders (ACEMA 64; Skiold Acemo,
Pontivy, France). Pigs were age 67 + 1 d (25 + 4 kg)
at the beginning of the test and were tested during the
growing—finishing period up to 168 + 13 d (115 £ 11
kg). The records collected during the first week of the
test, when pigs acclimated to the feeders, were dis-
carded from the analysis. Animals were fed ad libitum
with a pelleted diet of cercals and soybean meal with
10 MJI NE/kg and 160 g CP/kg, and a minimum of 0.80
g digestible Lys/MJ NE.

During the 14 consecutive weeks (from wk 2 to 15)
of the test period, animals were weighed weekly. The
individual FI of each animal was automatically recorded
cach time it used the feeder. Weekly averages of the dai-
ly FI (WDFTI) were then computed for each animal. The
WDFI outlier values and WDFI for which more than 2 d
of records were missing in a given week were removed
from the analysis, as reported by David et al. (2015).
The FCR was calculated for each animal i and week j

( e {4, ..., 13}) as follows (Huynh-Tran ct al., 2017):
FCRl.j = WDFIl.j/ADGl.j ,

in which WDFI.. is the WDFI of animal i for week
j and ADG is t(le ADG of animal i for week j (j e

{4, . 13}) estimated over a 4-wk period as follows:
ADG (BWU i BWU 2)/(agey 1o age; 2.

in which BW and age;; are the BW and the age of ani-
U
mal i at Week J, respectively. Only animals with at least
3 measures of FCR over the 10-wk period (wk 4 to 13)
were retained for analysis. Extreme values of FCR (<0
and >4.5) were considered outliers and set as missing.
The final data set comprised 11,790 weekly FCR values
for 1,186 male growing pigs available from wk 4 to 13
of'the test. For the sake of simplicity, we will denote L e

{1, ..., 10} instead of j € {4, ..., 13} hereafter. A total of
3,986 animals was included in the pedigree.

Data Analysis

Estimations of Genetic Parameters. Repeated
longitudinal FCR measurements were analyzed using
the RR and SAD models. Both models can be written,
for animal i at time 4 as

FCR,'j = lvll'(tj) + ul(tj) +pl-(l‘j) + &j > [1]

in which p (tj) is the fixed effect at time tiu (t) and
D (t) are the random genetic and permanent env1ron—
mental animal effects functions with u ~ N0, G ® A)
and p ~ MO, P ® I), in which A is the known rela-
tionship matrix; I the identity matrix; and G and P the

covariance matrices between weekly measurements of
FCR (of dimension 10 x 10) for genetic and perma-
nent environmental effects, respectively. Finally, ¢.. i is
the random residual effect € ~ N(0, Io 2) The random
functions were independent from one another.

In the RR model, for a given random effect u (t)
the general form of the random function of order m 1s

( ) zalk@k( ), in which a,is the (k + 1) RR

coefficient for the genetic effects for animal i, with a ~
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N(OK®A), in which K is the covariance matrix of
the additive RR coefficients, and ¢ k(t) is the (k + 1)t
Legendre polynomial at time .. In the RR model, the
relationship between K and G 1s given by G, = 0Ko',
in which ¢ is the n x (m + 1) (in which # is the number
of time points) matrix of the Legendre polynomials for
all time points.

Inthe SAD model, each random function is defined
by 3 parameters: the order of the antedependance (o),
the degree of the polynomial for each antedependence
parameter (B, to B,), and the degree of the polynomial
for the innovation variance (y). The function for the

random effect u is u,(z,)= Zev [t )+el(t;). in

which 0 is the st antedependence parameter for time
t t.and e, (t) is the error term for animal 7 at time tiu
and e are independent and e(t) ~ N0, Ac 2(t )). To
reduce the number of parameters in the SAﬁ mod-
el, continuous functions of time were assumed for

antedependence parameters zdcq ; and for

the 1nnovation variance 0( )—exp{th"J n

which d sq and bq are the coefficients for antedepen-
dence parameters and innovation variance.

We noted a SAD model with a given set of pa-
rameters as follows: SADa — B, ..., B,y. To facilitate
convergence and avoid identifiability problems be-
tween the structured random permanent environmen-
tal effect and the residual covariance matrices (Wang,
2013), the residual term ¢;; was removed from Eq. [1]
for the SAD model. The residual variance is therefore,
for this approach, included in the covariance matrix of
the permanent environmental effect.

Covariance components were estimated for both
models using the REML method using ASReml soft-
ware (Gilmour et al., 2009). Estimations for SAD
models were computed using the OWN function that
allows users of ASReml to model their own variance
structure, as proposed by David et al. (2017). The
fixed effects included were the same for both models,
as previously described by Huynh-Tran et al. (2017).

Both the degree of the polynomial functions for
the RR approach and the order and degrees of the an-
tedependence functions in the SAD approach were se-
lected by comparing nested models using likelihood
ratio tests. Once the best model for each approach was
identified, the data-fitting capacity of the selected RR
and SAD models was compared using the Bayesian
mformation criteria (BIC; Schwarz, 1978): BIC =
—2In(L) + ¢ x In(N — p), in which L is the REML of the
model, N is the number of observations, and p and ¢
are the number of fixed effects and covariance param-

eters, respectively. The approach (RR or SAD) with
the lowest BIC was considered the best fit for the data.

We compared the heritability and the estimated the
genetic covariance matrices obtained using the 2 ap-
proaches. The heritability estimates were computed for
cach week j as /I’ =G; /(G +P;+0.), in which P
and G are the estimates of matrices P and G, respec-
tively; o, 2 is included for only the RR model. Standard
eIToTS of heritability estimates were calculated for the
RR model in ASReml using the method proposed by
Fischer et al. (2004). For the SAD model, analyti-
cal expressions of the SE are more difficult to obtain.
Therefore, we used a bootstrap procedure to obtain SE
for this model. The bootstrap steps were as follows:

1. In iteration / sample a vector v, of antedependence

parameters and innovation covariance parameters (for
instance, d, to d s » b, to b are the parameters related
to the genetic variance) using multivariate sampling
v, ~MVN(%, V), in which ¥ is the vector of estimates,
V is their covariance matrix estimated using ASReml,

and MVN is multivariate normal distribution;

2. Using v,, calculate the genetic and permanent en-
vironmental variances for each time point (David
et al., 2015) and then their heritabilities;

3. Repeat steps 1 and 2 10,000 times to obtain a vec-
tor of estimated heritabilities; and

4. Based on the vector of estimated heritabilities, cal-
culate the mean and SE for the heritability (Efron
and Hastie, 2016).

The EBV for each time point for the RR and SAD
models were obtained as follows: EBV obtained with
the SAD model (EBV_SAD) were provided in the
ASReml outputs and the EBV obtained with the RR
model (EBV_RR) were computed using the estima-
tions of the individual regression coefficients provided

by ASReml as EBV RR,(t,)= Zalkgpk( ). We de-

noted SEBV_RR; and sEBV_SADl as the sum of the
EBV_RR and EBV_SAD, respectively, for an animal i
over the test period.

We compared these EBV with each other and with
the overall breeding values (the EBV from the animal
model using the FCR computed over the 10-wk pe-
riod; cEBV) obtained by analyzing the FCR for the
entire test period computed as the ratio of the ADFI
during the 10 wk of test over the ADG for the same
period. This overall FCR was analyzed using an ani-
mal mixed model: FCR; = p; +u; + €, in which FCR;
is the overall FCR for the entire test period for animal
i, p; 1s the fixed effect, u; is the animal additive genetic
effect of animal i, and €, is the residual term.

Selection Criterion. Next, computations ad-
dressed the issue of defining for each model a criteri-
on to select the best animals based on their 10 weekly
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EBV values. First, the patterns of EBV variation
over time were described using a trajectory classifi-
cation approach that classified animals into different
trajectory groups using a k-means approach with the
Euclidean distance. This method used a hill-climbing
algorithm jointly with expectation—-maximization. The
optimal number of clusters was chosen according to
the Calinski—Harabatz criterion (Genolini et al., 2015).
Next, the information contained in the 10 EBV
was summarized in a reduced number of n, , inde-
pendent variables using an eigendecomposition of
the G matrices estimated using the RR and the SAD
approaches. This method decomposes the covariance
matrix into a set of independent eigenvectors and as-
sociated eigenvalues. Each eigenvalue represents the
amount of variance explained by the associated eigen-
vector (Kirkpatrick et al., 1990). Summarized breed-
ing values (SBV) associated to the pth eigenvector
(SBVp;) were calculated for each animal i by multi-
plying the coresponding eigenvector with the vector
of EBV,. The SBV were denoted SBV_RRp and SBV_
SADp When obtained from the pth eigenvector of the
G matrices of the RR and SAD models, respectively.
For the RR model, we also calculated SBV ob-
tained from the e¢igendecomposition of the K matrix
as recommended for this model (Meyer and Hill,
1997; Van Der Werf et al., 1998). These summarized
EBV were denoted SBV_RRKp. The SBV_RRKp

for animal i was given by SBV RRKp za > 10
which & ol is the /M element of the pt elgenvector of K
(p =0, ..., m). The eigendecomposition of the K ma-
trix 1nstead of the G matrix has the advantage of pro-
ducing SBV that can be interpreted in regard to their
variation over time. Actually, eigenfunctions of time
can be obtained by multiplying the eigenvectors of K
with the Legendre polynomials (Schnyder et al., 2001;
Englishby et al., 2016). The K matrix is also usually of
reduced dimension compared with G.

We then characterized, within each approach, the
connection between the EBV group trajectory and the
different SBV. In addition, to validate the interpreta-
tion of the SBV obtained with the 2 G matrices, they
were compared with the SBV_RRKp. Finally, we
compared these SBV with cEBV (EBV for the full test
period FCR), sEBV_RR, and sEBV_SAD.

Appropriate Period for Estimating Longitudinal
Feed Conversion Ratio. Lastly, we investigated wheth-
er FI, and therefore FCR, could be measured over a
shorter period without compromising the description
of the dynamic of FCR over time, to maintain the pos-
sibility to select for features of this dynamic. Reducing
the time period for FI recording would allow collecting
of records for more animals for this trait, and therefore

FCR, and potentially increase the genetic gain. We first
defined 3 different 5-wk periods with FCR records (ini-
tial period, wk 1 to 5; intermediate period, wk 3 to 7;
and late period, wk 6 to 10) to be analyzed using the
SAD model. The corresponding SBV were then com-
puted as previously described for this model. The peri-
od providing the SBV with the highest correlation with
the first and second SBV obtained from the genetic co-
variance matrix G with the SAD model (SBV_SAD1
and SBV_SAD?2) obtained over the entire 10-wk period
was considered the best period for recording FCR.
Next, starting from the previous best 5-wk period,
the number of weeks used in the analysis was increased
by 1 wk at atime from 5 to 8 wk, and the same compari-
son was applied to determine the minimum number of
weeks needed to provide a “satisfactory” SBV for FCR.

RESULTS

Estimation of Genetic Parameters

After selection, the RR model of degree 2 for ge-
netic and permanent environmental effects was retained
as the best model within the RR category and required
13 parameters to be estimated. Meanwhile, for the SAD
approach, SAD1-22 was selected as the best SAD
model for genetic and permanent environmental effects
and required 12 parameters to be estimated. The BIC
values for the best RR and SAD models were —9,838
and —10,060, respectively, indicating that the SAD ap-
proach provided the best fit for the data.

The changes in heritabilities over time are shown in
Fig. 1. The heritability estimates were generally higher
with the SAD model than with the RR model. They
ranged from 0.22 to 0.46 (SE 0.03-0.06) for the SAD
model and from 0.08 to 0.33 (SE 0.02-0.07) for the RR
model. The heritabilities obtained with the RR model
decreased up to wk 5 and then increased again toward
the end of the test. For the SAD model, the heritability
estimates were quite high at the beginning, decreased
to aminimum at wk 8 (0.21 + 0.03), and then increased
before the end of the test period to reach values similar
to the RR estimations. The ranges of SE were simi-
lar for the 2 approaches, from 0.02 to 0.07 for the RR
model and from 0.03 to 0.06 for the SAD model.

The genetic correlations estimated for FCR over
the 10 wk using the RR and SAD models are present-
ed in Fig. 2. The genetic correlations between 2 giv-
en weeks depended on the time interval between the
weeks. The shorter the interval, the higher the correla-
tion. Correlations ranged from —0.39 to 0.98 for the
RR model and from 0.08 to 0.83 for the SAD model.
Consecutive week correlations were high and positive
for both models, ranging from 0.91 to 0.98 for the RR
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Figure 1. Changes of heritability estimates for feed conversion ratio over time under the random regression (RR) model using Legendre orthogonal
polynomials and the structured antedependence (SAD) model. Standard errors are indicated as bars for each point estimate.

model and from 0.68 to 0.83 for the SAD model. For
the RR model, the genetic correlations decreased as
the interval between the weeks increased and became
negative, resulting in negative correlations when the
time interval between weeks was more than 5 to 6 wk.
For the SAD model, the correlations decreased with
the time interval but remained positive.

Selection Criterion

Estimated Breeding Value Trajectory Classifi-
cation. The Spearman correlation between the weekly
EBV_SAD and weekly EBV_RR over 10 wk for all
animals was 0.95. The individual EBV trajectories un-
der the 2 models (RR and SAD) were classified into
3 groups as shown in Fig. 3. The 3 patterns of EBV
trajectories were similar for both models. Cohen’s
kappa agreement between the models was 0.80. The
first EBV trajectory pattern was a continuous EBV in-
crease over time with a weak slope and a low initial
value (35.4 and 40.3% of the animals for the RR and
SAD models, respectively; “A” group). The second
pattern also reflected an increase of the EBV over time
but had a steeper initial slope and higher initial value
(34.6 and 32.6% of the animals for the RR and SAD
models, respectively; “B” group). The last EBV tra-
jectory pattern simply reflected a constant EBV over
time (30.0 and 27.1% of the animals for the RR and
SAD models, respectively; “C” group).

Selection Criterion Using Summarized Breeding
Values. The approach based on ecigendecomposition
showed that the 2 first eigenvalues of Ggg and genetic

covariance matrix for SAD model (Gg,,) explained 90

and 73% of the genetic variation, respectively. The cor-
relations between the SBV obtained with the different

approaches are presented in Fig. 4. It should be noted

that, depending on the program used to compute the

eigendecomposition, matrices of eigenvectors of op-
posite signs can be obtained for the same initial cor-
relation matrix. Therefore, we chose the signs of eigen-
vectors matrices to maximize the number of positive

correlations with cEBV. The first summarized breeding

values obtained from the matrix K with the RR model

was highly correlated with SBV_RR1 (0.99) and SBV _
SAD2(0.99), whereas the second SBV obtained from

the coefficients covariance matrix K with the RR model

(SBV_RRK?2) was highly correlated with the second

summarized breeding value obtained from the genetic

covariance matrix G with the RR model (SBV_RR2;

0.99) and SBV_SAD1 (0.88) and also with sSEBV_RR
(0.96), sEBV_SAD (0.92), and cEBV (0.93).

In addition, the plots of the first 2 SBV depending
on the trajectory clusters previously identified for the
RR and SAD models (see Fig. 3) are presented in Fig. 5.
For both approaches, the first 2 SBV were sufficient to
describe the EBV trajectory types: for instance, for the
SAD approach, animals in group A had low SBV_SADI1
values, animals in group B had high SBV_SADI and
high SBV_SAD?2 values, and animals in group C had
high SBV_SADI and low SBV_SAD?2 values. This
suggested that SBV_SADI1 captured the average values
of EBV over time, whercas SBV_SAD2 captured the
slope of the EBV curve. The correspondences between
SBV_RRp and EBV trajectories obtained with the RR
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Figure 2. Genetic correlation estimates (x100) between times estimated with the random regression (RR) model (below the diagonal) and the struc-
tured antedependence (SAD) model (above the diagonal). The magnitude and sign of the correlations are indicated with darker and larger circles and blue

(positive) or red (negative) colors, respectively.

approach also showed a clear distribution of the indi-
viduals from each group trajectory according to combi-
nations of SBV_RRp. Finally, the plot of the eigenfunc-
tions (Fig. 6) showed that the first eigenfunction was
negative during the first 2 wk, then was positive from
wk 2 until wk 9, and became negative again and de-
creased until the end of the test. The second eigenfunc-
tion was always positive and stable from wk 1 to 5, then
mcreased, and reached a maximum at the end of the test.

Appropriate Period for Estimating Longitudinal
Feed Conversion Ratio. The correlations between
SBV_SADI1 and SBV_SAD2 obtained for reduced
test periods and SBV_SADI1 and SBV_SAD2 ob-
tained for the whole test period were estimated. The
SBV_SADI1 related to the middle period had a higher
correlation to SBV_SADI1 for the whole test period
than that related to the first 5-wk period (0.93 vs.
0.89, respectively), whereas its correlation with the
SBV_SAD2 was lower (0.67 vs. 0.69 for wk 1 to 5
and wk 3 to 7, respectively). When the evaluation pe-
riod was extended by 1 wk toward the beginning or to-
ward the end of the test period, these correlations did
not increase for the middle period, contrary to those
of the first 5-wk period extended for wk 6 (results not

shown). Therefore, only results for the extended pe-
riods starting at the beginning of the test are reported.
In this situation, the correlation between SBV_SAD1
(SBV_SAD?2) for the reduced period and SBV_SADI1
(SBV_SAD?2) for the whole test period increased with
the number of weeks included, from 0.89 (0.69; wk 1
to 5) to 0.98 (0.87; wk 1 to 8; Fig. 7).

DISCUSSION

Estimation of Genetic Parameters

Using the BIC, the SAD model showed a slightly
better fit to the data than the RR model. Furthermore,
the predictive ability 1 wk ahead, computed as pro-
posed by David et al. (2015), was similar for the 2
models (average Vonesh concordance coefficient
= 0.39 for both). The SAD model provided higher
heritability estimates than the RR model. Similar re-
sults have been found in the literature for other traits
(Jaffrézic et al., 2004; David et al., 2015). The low-
er values of heritability obtained with the RR model
might be a consequence of the border effect problem
associated with this model, which is eliminated in
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Figure 3. Individual EBV trajectories (in black) and group trajectories resulting from nonhierarchical k-means clustering analyses with 3 groups obtained
with the random regression (a) and structured antedependence models (b). The proportion of individuals gathered in each group is indicated above each graph.

the SAD model that combines the antedependence
parameters and innovation variances (Jaffrézic et al.,
2004), suggesting a greater confidence in the genetic
parameters obtained with the SAD model. This was
reinforced by results from a multiple trait model with
a diagonal covariance matrix applied to weekly FCR.
Heritabilities obtained with the SAD model were
closer to those of the multiple trait model than herita-
bilities of the RR model with this multiple trait model

(average absolute difference = 0.09 vs. 0.15, respec-
tively), the heritabilities being systematically lower
with the RR model. Nonetheless, it should be noted
that the computing time of the SAD model for each
iteration is longer than the one of the RR model (2.7
times longer, on average) but SAD models generally
converge with fewer iterations. Consequently, on our
data set, the total computing time of the SAD model
was 1.2 times longer than for the RR model.
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Figure 4. Distributions of the summarized breeding values (SBV_SADI and SBV_SAD2 = first and second summarized breeding values, respec-
tively, obtained from the genetic covariance matrix G with the structured antedependence [SAD] model; SBV_RRK1 and SBV_RRK2 = first and second
summarized breeding values, respectively, obtained from the coeflicients covariance matrix K with the random regression [RR] model; SBV_RR1 and
SBV_RR2 = first and second summarized breeding values, respectively, obtained from the genetic covariance matrix G with the RR model), the sums of
EBV over the 10 wk (SEBV_RR and sSEBV_SAD = sum of EBV obtained with the RR and SAD models, respectively), and the EBV from the animal model
using the feed conversion ratio computed over the 10-wk period (¢cEBV; on the diagonal), joint distributions of these estimates (below the diagonal), and

Spearman correlations between the estimates (above the diagonal).

We used a bootstrap procedure to compute the SE
of heritability obtained with the SAD model. It is also
feasible to use Taylor expansion to obtain an approxi-
mate SE. Nonetheless, the formula becomes complex
when the order of the antedependence increases.

The heritabilities obtained with the SAD model
(from 0.22 to 0.46) at different weeks were in line with
those reported in the literature for FCR values record-
ed over the full growing period on earlier generations
of the same population (0.24 + 0.06; Saintilan et al.,
2012) and in other Large White/Yorkshire populations:
0.26 £ 0.07 (Bunter et al., 2010), 0.30 £ 0.03 (Saintilan
et al., 2013), and 0.32 + 0.05 (Do et al., 2013). The
changes of heritabilities with time are consistent with
the assumption that different genes can be associated
with FCR at different stages of growth, as suggested
by Shirali et al. (2013) for residual FI and FCR.

For the SAD and RR models, the genetic correla-
tions decreased as the time interval between measure-
ments increased. They became negative in the case of
the RR model, although this is unlikely to reflect the
true correlations between these distant periods. It has
been previously reported that because the RR model
cannot handle correlations that asymptotically tend to
0, it provides biased estimates of the correlations for
distant time intervals (Jaffrézic et al., 2004).

In such cases, the correlations become negative,
as observed in previous studies (David et al., 2015). It
should be noted that considering heterogencous resid-
ual variance with time in the RR model did not modify
these negative value estimates and did not reduce the
border effects problem (results not shown). The posi-
tive genetic correlations over time estimated with the
SAD model suggest that efficient animals with low
FCR values at the beginning of the test period tend
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Figure 5. Scatterplots of the individual first and second summarized breeding values obtained from the estimated covariance matrices K with the random
regression (RR) model (a; SBV_RRKI and SBV_RRK2, respectively), from the genetic covariance matrix G with the RR model (b; SBV_RR1 and SBV_RR2,
respectively), and from the genetic covariance matrix G with the structured antedependence (SAD) model (¢; SBV_SADI and SBV_SAD?2, respectively).
The groups of trajectories to which each individual belongs as determined using the nonhierarchical &-means approach (see Fig. 3) applied to the longitudinal
EBV from the RR model (a and b) and from the SAD model (¢) are indicated as red circles (A group), green squares (B group), and blue triangles (C group).

to also have a lower FCR toward the middle of the
test, but more independent results seem to be expected
toward the end of the test. Henryon et al. (2002) esti-
mated the genetic correlations between FCR values in
growing rainbow trout at different time points over a
215-d period. Most of the correlations were positive
and high. No reports about such genetic correlations
for FCR could be found in the literature for pigs.

Selection Criterion

Modeling longitudinal data yields more accurate
EBYV due to the inclusion of repeated records over
time and consideration of the covariance structure of
the data (Boligon et al., 2011). However, the main dif-
ficulty of selection based on repeated measurement
analysis is the obtention of as many EBV as time points

used for the evaluation. The general idea is, therefore,
to summarize these multiple EBV into a smaller set of
new composite dimensions with a minimum loss of
information (Van Der Werf et al., 1998), as success-
fully applied by Buzanskas et al. (2013). Ideally, 1 or
2 indexes can capture the individual EBV trajectory
profiles to ease animal selection.

In the current study, a classification approach was
used to identify different typical EBV trajectorics
from the SAD and RR approaches, as earlier proposed
to cluster egg production curves at the phenotypic lev-
el by Savegnago et al. (2011) and milk yield profiles
at the genetic level by Savegnago et al. (2016). This
trajectory classification is proposed in our study as a
complementary analysis to describe the group trajec-
tories and better comprehend the animal profiles as
compared with the selection objectives of a breeding
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Figure 6. Two first eigenfunctions (unitless) associated with the covariance matrix K of the random regression model represented over the 10 wk of the test.

program. To summarize the EBV, we applied an eigen-
decomposition of the G genetic covariance matrices
from the RR and SAD models, as originally applied to
the K matrix of the RR models (Van Der Werf et al.,
1998). The eigendecomposition has the advantage of
accounting for the genetic covariances between weeks,
which is not the case when using the average of the
weekly EBV. By extracting the main axes of covari-
ability among the EBV along time, 1 or 2 eigencom-
ponents usually capture almost all the additive genetic
variation in level and shape of the genctic curve, at
least when applied to lactation curves (Druet et al.,
2005; Togashi and Lin, 2006). Our results show that
the first 2 SBV obtained from the eigendecomposition
of the G matrix of the SAD model provided informa-
tion similar to that of the eigendecomposition of the K
matrix from the RR model. These SBV could, there-
fore, be similarly interpreted based on the eigenfunc-
tions from the K matrix or the trajectory classification
applied to the weekly EBV. As a result, combina-
tions of the 2 first SBV are sufficient to describe the 3
groups of trajectories. It suggests that animals within a
trajectory share genetic features that drive the dynam-
ics of their feed efficiency during growth.

Despite differences in the estimation of the genet-
ic parameters between the 2 approaches, the selection
results were very similar for the RR and SAD models
and could be confirmed by computing correlations be-
tween different SBV and with cEBV. In practice, one
of the SBV was related to the average level of FCR
during the test period (SBV_SADI and SBV_RR2)
and the other one was related to the slope of the curve
over time (SBV_RRI1 and SBV_SAD2). In spite of
this high concordance between the 2 approaches, the
first 2 eigenvectors according to Gg,, explained only

about 73% of the genetic variation, which is rather
lower than for the RR model (90%).

As expected from earlier studies (Kirkpatrick et al.,
1990; Meyer and Kirkpatrick, 2005), the use of the K
matrix and the G matrix of the RR model to calculate
SBYV led to very similar results. In the present study, the
first eigenfunction changed sign with time. This sug-
gests that selection for this first component would have
opposite effects for the intermediate period compared
with the extreme periods (2 wk at the beginning and
2 wk at the end of the trajectory). The second eigen-
function increased with time and was always positive.
This means that selection for SBV_RRK2 would lead
to selection in the same direction for all the time points,
with a higher weight at the end of the testing period in
comparison with the beginning of the period. Due to the
high correlation between the first SBV obtained from
the coefficients covariance matrix K (SBV_RRK1)
and SBV_RRI or SBV_SAD?2, it confirmed our inter-
pretation of SBV_RR1 and SBV_SAD?2 as indicators
of the slope of the feed efficiency curve.

To summarize, SBV can be used for selection pur-
poses. To fully evaluate their potential, the estimation
of genetic correlations with other production traits
would provide a better insight on the use of the trajec-
tories for selection. Indeed, it can be assumed that ani-
mals from the A group (low average FCR but a regular
increase over time) would show a different fat content
at slaughter than animals from the C group of similar
average FCR, so selection for different FCR trajecto-
rics would consolidate breeding objectives on carcass
composition. Further comparison of responses to se-
lection for the traits of the breeding objective using
different indexes options (cEBV and two first SBVs
associated to the two first eigenvector of the matrix G)
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or a combination of two among them, would clarify
the possible selection strategies.

Appropriate Period for Estimating
Longitudinal Feed Conversion Ratio

The accuracy of the estimation of genetic param-
eters heavily relies on the quantity of data available.
On the other hand, the cost of individual FI measures
is high. Therefore, there is a trade-off between parsi-
mony, complexity of the analysis, and potential bias,
so choices need to be made. The goal is, therefore,
to reduce the duration of the test period for FI with
a minimum loss of accuracy for animal selection for
FCR dynamic features, to test more pigs and increase
the genetic gain (Begli et al., 2016). Wetten et al.
(2012) proposed to use information on early periods
of FI combined with information on growth to reduce
the test period. In the current study, a similar conclu-
sion was reached: the first weeks of test showed bet-
ter correlations to selection criteria obtained with the
whole test period than the middle and the last periods.
The selection accuracy could be increased stepwise
by extending the evaluation from 5 to 8 wk of dura-
tion. Further studies are required to better understand
the link between the genetic gain, the costs associated
with different strategies, and the changes in prediction
accuracy due to a combined reduction of the duration
of the test period and a greater number of pigs tested.

Conclusion

The current study indicates that the SAD model
is promising for genetic selection: 1) it requires fewer
parameters to fit the covariance matrices than the RR
model and 2) it is not associated with the border effect
problems and negative correlation estimates observed
with the RR model. The use of SBV is a solution for
animal selection applicable with the SAD model. The
results of this study also suggest that a reduction of the
duration of the FI test period to reduce measurement
costs is probably feasible to select for feed efficiency.
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