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The objective of the present study 
was to compare a random regression model, usually 
used in genetic analyses of longitudinal data, with the 
structured antedependence (SAD) model to study the 
longitudinal feed conversion ratio (FCR) in growing 
Large White pigs and to propose criteria for animal 
selection when used for genetic evaluation. The study 
was based on data from 11,790 weekly FCR measures 
collected on 1,186 Large White male growing pigs. 
Random regression (RR) using orthogonal polynomial 
Legendre and SAD models was used to estimate genet
ic parameters and predict FCR-based EBV for each of 
the 10 wk of the test. The results demonstrated that the 
best SAD model ( 1 order of antedependence of degree 
2 and a polynomial of degree 2 for the innovation 
variance for the genetic and permanent environmental 
effects, i.e., 12 parameters) provided a better fit for the 
data than RR with a quadratic function for the genetic 
and permanent environmental effects (13 parameters), 
with Bayesian information criteria values of -10,060 
and -9,838, respectively. Heritabilities with the SAD 

model were higher than those of RR over the first 7 wk 
of the test. Genetic correlations between weeks were 
higher than 0.68 for short intervals between weeks 
and decreased to 0.08 for the SAD model and -0.39 
for RR for the longest intervals. These differences in 
genetic parameters showed that, contrary to the RR 
approach, the SAD model does not suffer from border 
effect problems and can handle genetic correlations 
that tend to 0. Summarized breeding values were pro
posed for each approach as linear combinations of the 
individual weekly EBV weighted by the coefficients 
of the first or second eigenvector computed from 
the genetic covariance matrix of the additive genetic 
effects. These summarized breeding values isolated 
EBV trajectories over time, capturing either the aver
age general value or the slope of the trajectory. Finally, 
applying the SAD model over a reduced period of 
time suggested that similar selection choices would 
result from the use of the records from the first 8 wk of 
the test. To conclude, the SAD model performed well 
for the genetic evaluation oflongitudinal phenotypes. 
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Feed efficiency is a benchmark for profitability in 
pig farming because the cost of feed represents about 
two-thirds of total production costs. It also reduces 
the negative effects of livestock fam1ing on the em i
ronment (Patience et aL 2015: Gilbert et aL 2017). 
W"ith the development of automatic equipment, indi
vidual feed intake ( ) and BW values can be repeat
edly measured during the production period in some 
species. The analysis ofrepeated records can prmide 
more accurate estimations in a genetic selection con
text than simple trait analyses (Boligon et aL 2011). 
To analyze such longitudinal data, genetic models 
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should account for the covariance structures of the re
peated records ,vith fe,v parameters to estimate. TI1e 
random regression ( ) model is ,videly used, even if 
it presents various drmvbacks such as higher variances 
at the beginning and the end of the studied period, so
called border effect problems (Jaffrezic et al., 2004; 
Meyer, 2005). The stmctured antedependence ( ) 
model also deals ,vith the correlation stmcture of data 
and has been shmvn to better fit covariance stmctures 
than RR models (Jaffrezic and Pletcher, 2000; Jaffrezic 
et al., 2004: David et al., 2015). Up to now, it has been 
less widely used than the RR model due to the lack 
of tools; however, user-friendly software (David et 
al., 2017) is now freely available (https://zenodo.org/ 
record/8963 77; accessed 20 Sep. 2017). For selection 
purposes, an interpretable eigenvalue decomposition 
of the additive genetic matrix of the RR coefficients 
of the RR model has been proposed to summarize the 
individual genetic potential over time as 1 or 2 values 
(Van Der Werf et al., 1998), capturing features such 
as persistency or area under the cunre when applied 
to lactation curves (Togashi and Lin, 2006). To our 
knmvledge, no methods for summarizing breeding 
values from the SAD model have yet been proposed. 
The objective of our study was to compare RR and 
SAD models for the genetic analysis of repeated mea
sures of the feed conversion ratio ( ) in grmving 
pigs and to propose criteria for animal selection for 
the SAD model. 

Data ,vere collected in accordance with the applica
ble national regulations on livestock welfare in France. 

The present study includes data from 1,186 Large 
White boars over 8 generations of di vcrgcnt selection 
forresidual FI raised aftenveaning in the Rouille INRA 
experimental fann (GenESI, Vienne, France). The se
lection process was described in deta,il by Gilbert et al. 
(2007). The data used ,vere collected from candidate 
boars tested in groups of 12 in pens equipped ,vith 
single electronic feeders (ACE:MA 64: Skiold Acerno, 
Pontivy, France) . Pigs ,vere age 67 ± 1 d (25 ± 4 kg) 
at the beginning of the test and were tested during the 
growing-finishing period up to 168 ± 13 d (115 ± 11 
kg). The records collected during the first week of the 
test, ,vhen pigs acclimated to the feeders, were dis
carded from the analysis. Animals ,vcre fed ad libitum 
with a pelleted diet of cereals and soy bean meal with 
10 MJNE/kg and 160 g CP/kg, and a.minimum of0.80 
g digestible Lys/MJ NE. 

During the 14 consecutive weeks (from wk 2 to 15) 
of the test period, animals were weighed weekly. The 
individual FI of each animal was automatically recorded 
each time it used the feeder. Weekly averages of the dai
ly FI ( )were then computed for each animal. The 
WDFI outlier values and WDFI for which more than 2 d 
of records were missing in a given week were removed 
from the analysis, as reported by David et al. (2015). 
The FCR was calculated for each animal and week 

( E {4, ... , 13})asfollows(Huynh-Traneta1.,2017): 

FCR = WDFI /ADG , 

in which WDFI is the WDFI of animal for week 
and is the ADG of animal for week ( E 

{ 4, ... , 13 }) estimated over a 4-wk period as follows: 

in which BW and age are the BW and the age of ani
mal at week , respectively. Only animals ,vith at least 
3 measures of FCR over the 10-wk period (wk 4 to 13) 
were retained for analysis. E:\.1reme values of FCR (<0 
and >4.5) ,vere considered outliers and set as missing. 
The final data set comprised 11,790 ,veekly FCR values 
for l, 186 male growing pigs available from wk 4 to 13 
of the test. For the sake of simplicity, we ,vill denote E:: 

{ L ... , 10} instead of E { 4, ... , 13} hereafter. A total of 
3,986 animals was included in the pedigree. 

Repeated 
longitudinal FCR measurements were analyzed using 
the RR and SAD models. Both models can be written, 
for animal at time , as 

=µ( )+ ( )+ ( )+c , [l] 

in which µ ( ) is the fixed cJTcct at time ( ) and 
( ) arc the random genetic and permanent environ

mental animal effects functions with (0, @ ) 

and (0, :8l ), in which is the knmvn rela
tionship matrix; the identity matrix; and and the 
covariance matrices between weekly measurements of 
FCR (of dimension 10 x 10) for genetic and penna
nent environmental effects, respectively. Finally, c is 
the random residual effect c - N(O, o/). The random 
functions were independent from one another. 

In the RR model , for a given random effect ( ), 
the general form of the random function of order 1s 

( ) = L 1> ( ), in which a") s the ( + 1)1h RR 

coefficient for the genetic cJTccts for animal , with 
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(0, 0 ), in vvhich is the covariance matrix of 
the additive RR coefficients, and (p ( ) is the ( + 1 )th 

Legendre polynomial at time . In the RR model, the 
relationship bet\veen and is given by = (p (p', 
in ,:vhich q> is the x ( + 1) (in ,vhich is the number 
oftime points) matrix of the Legendre polynomials for 
all time points. 

In the SAD model, each random fonction is defined 
by 3 parameters: the order of the antedependance (a), 
the degree of the polynomial for each antedependence 
parameter (B1 to Bu), and the degree of the polynomial 
for the im1ovation variance (y). The function for the 

random c.ITcct IS ( ) = i 0 ( _ ) + ( ) , in 

which 0 is the th antcdcpcndc~1cc parameter for time 
and ( ) is the error tcm1 for animal at time : 

and are independent and ( ) ~ (0, CJ 2( )). To 
reduce the number of parameters in the SAD mod
el, continuous fi.mctions of time ,vere assumed for 

[l 

antedependence parameters O = L and for 

the innovation 

,:vhich and 

variance o ( ) = ( t ] , in 

are the coefficients for antedepen-
dence parameters and innovation variance. 

We noted a SAD model with a given set of pa
rameters as follows: SADa - j)1, ... , BuY· To facilitate 
convergence and avoid identifiability problems be
t\veen the stmctured random permanent environmen
tal effect and the residual covariance matrices (Wang, 
2013), the residual term c: ,vas removed from Eq. 111 
for the SAD model. The residual variance is therefore, 
for this approach, included in the covariance matrix of 
the permanent environmental effect. 

Covariance components ,vcrc estimated for both 
models using the REML method using ASRcml soft
ware (Gilmour et al. , 2009). Estimations for SAD 
models were computed using the OWN function that 
allows users of ASRcml to model their own variance 
stmcture, as proposed by David et al. (2017). The 
fixed effects included were the same for both models, 
as previously described by Huynh-Tran et al. (2017). 

Both the degree of the polynomial functions for 
the RR approach and the order and degrees of the an
tedependence functions in the SAD approach were se
lected by comparing nested models using likelihood 
ratio tests. Once the best model for each approach was 
identified, the data-fitting capacity of the selected RR 
and SAD models ,vas compared using the Bayesian 
information criteria ( ; Schwarz, 1978): BIC = 
- 2111( ) + x ln( - ) , in which is the REML of the 
model, is the number of observations, and and 
arc the number of fixed effects and covariance param-

0 

eters, respectively. The approach (RR or SAD) with 
the lmvest BIC was considered the best fit for the data. 

We compared the heritability and the estimated the 
genetic covariance matrices obtained using the 2 ap
proaches. The heritabiJity e§!ima!._es were computed for 
each week as = ( + +o ), in which 
and are the estimates of matrices and , respec
tively; CJ 

2 is included for only the RR model. Standard 
errors of heritability estimates were calculated for the 
RR model in ASReml using the method proposed by 
Fischer et al. (2004). For the SAD model, analyti
cal expressions of the SE arc more difficult to obtain. 
l11crcforc, we used a bootstrap procedure to obtain SE 
for this model. 111c bootstrap steps were as follows: 

l 

V 

The EBY for each time point for the RR and SAD 
models were obtained as follows : EBY obtained with 
the SAD model ( ) were provided in the 
ASReml outputs and the EBY obtained with the RR 
model ( ) were computed using the estima
tions of the individual regression coefficients provided 

by ASRcml as ( ) = L 1! ( ) . We de-

noted and as the sum of the 
EBV _RR and EBV _SAD, respectively, for an animal 
over the test period. 

We compared these EBV with each other and with 
the overall breeding values (the EBV from the animal 
model using the FCR computed over the 10-,vk pe
riod: ) obtained by analyzing the FCR for the 
entire test period computed as the ratio of the ADFI 
during the 10 ,vk of test over the ADG for the same 
period. This overall FCR was analyzed using an ani
mal mixed model : FCR = µ + c: , in which FCR 
is the overall FCR for the entire test period for animal 
, µ is the fixed effect, is the animal additive genetic 

effect of animal , and c: is the residual term. 
Next, computations ad

dre ssed the issue of defining for each model a criteri
on to select the best animals based on their 10 weekly 
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EBV values. First, the patterns of EBV variation 
over time were described using a trajectory classifi
cation approach that classified animals into different 
trajectory groups using a -means approach ,vith the 
Euclidean distance. This method used a hill-climbing 
algorithm jointly ,vith expectation-maximization. The 
optimal number of clusters v-7as chosen according to 
the Calinski-Harabatz criterion (Genolini et al., 2015). 

Next, the information contained in the l O EBY 
was summarized in a reduced number of inde
pendent variables using an eigcndccomposition of 
the matrices estimated using the RR and the SAD 
approaches. This method decomposes the covariance 
matrix into a set of independent eigenvectors and as
sociated eigenvalues. Each eigenvalue represents the 
amount of variance explained by the associated eigen
vector (Kirkpatrick et al., 1990). Summarized breed
ing values ( ) associated to the th eigenvector 
( ) -vvere calculated for each animal by multi
plying the coresponding eigenvector with the vector 
of . TI1e SBV were denoted and SBV 
SAD when obtained from the th eigenvector of the 

matrices of the RR and SAD models, respectively. 
For the RR model, we also calculated SBV ob

tained from the eigendecomposition of the matrix 
as recommended for this model (Meyer and Hill, 
1997; Van Der Werf et al., 1998). These summarized 
EBV ,vere denoted The SBV RRK 

for animal was given by = L , in 

which is the th element of the pth eigenvector of 
( = 0, . .. , ). The eigendecomposition of the ma
trix instead of the matrix has the advantage of pro
ducing SBV that can be interpreted in regard to their 
variation over time. Actually, eigenfunctions of time 
can be obtained by multiplying the eigenvectors of 
with the Legendre polynomials (Schnyder et al. , 200 l; 
Englishby etal., 2016). The matrix is also usually of 
reduced dimension compared ,vith 

We then characterized, ,vithin each approach, the 
connection between the EBV group trajectory and the 
different SBV In addition, to validate the interpreta
tion of the SBV obtained with the 2 matrices, they 
were compared v,,ith the SBV _RRK . Finally, ,ve 
compared these SBV with cEBV (EBV for the full test 
period FCR), sEBV _RR, and sEBV _SAD. 

Lastly, ,ve investigated wheth
er FI, and therefore FCR, could be measured over a 
shorter period ,vithout compromising the description 
of the dynamic of FCR over time, to maintain the pos
sibility to select for features of this dynamic. Reducing 
the time period for FI recording would allow collecting 
of records for more animals for this trait, and therefore 

FCR and potentially increase the genetic gain. We first 
defined 3 different 5-wk periods with FCR records (ini
tial period, ,vk 1 to 5; intennediate period, wk 3 to 7; 
and late period, wk 6 to l 0) to be analyzed using the 
SAD model. The corresponding SBV were then com
puted as previously described for this model. The peri
od providing the SBV with the highest correlation with 
the first and second SBV obtained from the genetic co-
variance matrix with the SAD model ( 
and ) obtained over the entire l 0-wk period 
was considered the best period for recording FCR. 

Next, starting from the previous best 5-wk period, 
the number of weeks used in the analysis was increased 
by l w k at a time from 5 to 8 w k, and the same compari
son was applied to detcnnine the minimum number of 
weeks needed to provide a "satisfactory" SBV for FCR. 

After selection, the RR model of degree 2 for ge
netic and pennanent environmental effects was retained 
as the best model within the RR category and required 
13 parameters to be estimated. Meanwhile, for the SAD 
approach, SADl- 22 was selected as the best SAD 
model for genetic and permanent environmental effects 
and required 12 parameters to be estimated. The BIC 
values for the best RR and SAD models were -9,838 
and - l 0,060, respectively, indicating that the SAD ap
proach provided the best fit for the data. 

The changes in heritabilities overtime are shown in 
Fig. 1. T11e heritability estimates were generally higher 
with the SAD model than with the RR model. T11ey 
ranged from 0.22 to 0.46 (SE 0.03-0.06) for the SAD 
model and from 0.08 to 0.33 (SE 0.02-0.07) for the RR 
model. T11e heritabilities obtained with the RR model 
decreased up to wk 5 and then increased again toward 
the end of the test. For the SAD model, the heritability 
estimates were quite high at the beginning, decreased 
to a minimum at ,vk 8 (0.21 ± 0.03), and then increased 
before the end of the test period to reach values similar 
to the RR estimations. TI1e ranges of SE were simi
lar for the 2 approaches, from 0.02 to 0.07 for the RR 
model and from 0.03 to 0.06 for the SAD model. 

The genetic correlations estimated for FCR over 
the 10 wk using the RR and SAD models are present
ed in Fig. 2. The genetic correlations between 2 giv
en weeks depended on the time interval between the 
weeks. T11e shorter the interval, the higher the correla
tion. Correlations ranged from -0.39 to 0.98 for the 
RR model and from 0.08 to 0.83 for the SAD model. 
Consecutive week correlations were high and positive 
for both models, ranging from 0.91 to 0.98 for the RR 
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model and from 0.68 to 0.83 for the SAD model. For 
the RR model, the genetic correlations decreased as 
the interval between the weeks increased and became 
negative, resulting in negative correlations when the 
time interval between weeks was more than 5 to 6 wk. 
For the SAD model, the correlations decreased with 
the time interval but remained positive. 

Estimated Breeding Value Trajectory Classifi-
Thc Spearman correlation between the weekly 

EBV_SAD and weekly EBV RR over 10 wk for all 
animals was 0.95. The individual EBY trajectories un
der the 2 models (RR and SAD) v,·ere classified into 
3 groups as shown in Fig. 3. The 3 patterns of EBV 
trajectories were similar for both models. Cohen's 
kappa agreement between the models was 0.80. The 
first EBV trajectory pattern was a continuous EBV in
crease over time with a weak slope and a low initial 
value (35.4 and 40.3% of the animals for the RR and 
SAD models, respectively; "A" group) . 111e second 
pattern also reflected an increase of the EBY overtime 
but had a steeper initial slope and higher initial value 
(34.6 and 32.6% of the animals for the RR and SAD 
models, respectively: "B" group). The last EBV tra
jectory pattern simply reflected a constant EBY over 
time (30.0 and 27.1% of the animals for the RR and 
SAD models, respectively; "C" group). 

The approach based on eigendecomposition 
showed that the 2 first eigenvalues of and genetic 

covariance matrix for SAD model ( ) explained 90 
and 73% of the genetic variation, respectively. The cor
relations between the SBV obtained with the different 
approaches are presented in Fig. 4. It should be noted 
that, depending on the program used to compute the 
eigendecomposition, matrices of eigenvectors of op
posite signs can be obtained for the same initial cor
relation matrix. Therefore, we chose the signs of eigen
vectors matrices to maximize the number of positive 
correlations with cEBV. The first summarized breeding 
values obtained from the matrix K with the RR model 
was highly correlated with SBV _ RR I (0. 99) and SBV _ 
SAD2(0.99), whereas the second SBV obtained from 
the coefficients covariance matrix with the RR model 
( ) ,vas highly correlated with the second 
summarized breeding value obtained from the genetic 
covariance matrix with the RR model ( 
0.99) and SBV _SADI (0.88) and also with sEBV _RR 
(0.96), sEBV _SAD (0.92), and cEBV (0.93). 

In addition, the plots of the first 2 SBY depending 
on the trajectory clusters previously identified for the 
RR and SAD models (sec Fig. 3) arc presented in Fig. 5. 
For both approaches, the first 2 SBV were sufficient to 
describe the EBY trajectory types: for instance, for the 
SAD approach, animals in group A had low SBV _ SAD 1 
values, animals in group B had high SBV _SAD) and 
high SBY _SAD2 values, and animals in group Chad 
high SBV _ SAD I and low SBV _ SAD2 values. TI1is 
suggested that SBV _SAD I captured the average values 
of EBV over t ime, whereas SBV _SAD2 captured the 
slope of the EBV curve. TI1e correspondences bet\veen 
SBV _RR and EBV trajectories obtained with the RR 
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approach also shmved a clear distribution of the indi
viduals from each group trajectory according to combi
nations of SBV _RR . Finally, the plot of the eigenfimc
tions (Fig . 6) showed that the first eigenfunction was 
negative during the first 2 wk, then was positive from 
wk 2 until wk 9, and became negative again and de
creased until the end of the test. The second eigenfunc
tion was always positive and stable from wk l to 5, then 
increased, and reached a maximum at the end of the test. 

l11e correlations bet\veen 
SBV SAD l and SBV SAD2 obtained for reduced - -

test periods and SBV _SADl and SBV _SAD2 ob-
tained for the vd10le test period vvere estimated. l11e 
SBV _ SAD l related to the middle period had a higher 
correlation to SBV _ SAD 1 for the vd10le test period 
than that related to the first 5-wk period (0.93 vs. 
0.89, respectively), ,vhereas its correlation with the 
SBV _SAD2 was lower (0.67 vs . 0 .69 for wk 1 to 5 
and ,vk 3 to 7, respectively) . When the evaluation pe
riod was e:,.,.1ended by 1 wk tmvard the beginning or to
ward the end of the test period, these correlations did 
not increase for the middle period, contrary to those 
of the first 5-wk period extended for wk 6 (results not 

shown). Therefore, only results for the extended pe
riods starting at the beginning of the test are reported. 
In this situation, the correlation between SBV _SADl 
(SBV _SAD2) for the reduced period and SBV _SADl 
(SBV _SAD2) for the whole test period increased with 
the number of weeks included, from 0.89 (0.69; wk 1 
to 5) to 0.98 (0.87; wk 1 to 8; Fig. 7). 

Using the BIC, the SAD model showed a slightly 
better fit to the data than the RR model. Furthermore, 
the predictive ability 1 wk ahead, computed as pro
posed by David et al. (2015) , was similar for the 2 
models (average Vonesh concordance coefficient 
= 0.39 for both). The SAD model provided higher 
heritability estimates than the RR model. Similar re
sults have been found in the literature for other traits 
(Jaffrezic et al., 2004; David et al., 2015). The low
er values of heritability obtained with the RR model 
might be a consequence of the border eJTect problem 
associated with this model, which is eliminated in 
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the SAD model that combines the antedependence 
parameters and innovation variances (Jaffrezic et al. , 
2004), suggesting a greater confidence in the genetic 
parameters obtained ,vith the SAD model. This was 
reinforced by results from a multiple trait model with 
a diagonal covariance matrix applied to weekly FCR. 
Heritabilities obtained ,vith the SAD model were 
closer to those of the multiple trait model than herita
bilities of the RR model with this multiple trait model 

(average absolute difference = 0.09 vs. 0.15, respec
tively), the heritabilities being systematically lower 
with the RR model. Nonetheless, it should be noted 
that the computing time of the SAD model for each 
iteration is longer than the one of the RR model (2. 7 
times longer, on average) but SAD models generally 
converge with tewer iterations . Consequently, on our 
data set, the total computing time of the SAD model 
was 1.2 times longer than for the RR model. 
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Distributions of the summarized breeding values (SBV _ SAD 1 and SBV _ SAD2 - first and second summarized breeding values, respec
tively, obtained from the genetic covariance matrix w ith the structured antcdcpendencc [SAD] model; SHY _RRK 1 and SH V _RRK2 = first and second 
summarized hreeding values, respectively, obtained from the coefficients covariance matrix with the random regression [RRJ model; SHY _RRl and 
SHV _ RR2 = first and second summarized hrccding values, respectively, ohtained from the genetic covariance matrix with the RR model), the sums of 
EDV over the 10 wk (sEDV RR and sEDV SAD - sum of EDV obtained with the RR and SAD models. respedively ), and the EDV from the animal model 
using the feed ~on version ratio computed over the 10-wk period (~EDV; on the diagonal). joint distributions of these estimates (below the diagonal). and 
Speannan correlations between the estimates (above the diagonal). 

We used a bootstrap procedure to compute the SE 
of heritability obtained with the SAD model. It is also 
feasible to use Taylor expansion to obtain an approxi
mate SE. Nonetheless, the formula becomes complex 
when the order of the antedependence increases. 

The heritabilities obtained ,vith the SAD model 
(from 0.22 to 0.46) at different vveeks were in line ,vith 
those reported in the literature for FCR values record
ed over the foll grmving period on earlier generations 
of the same population (0.24 ± 0.06; Saintilan et al., 
2012) and in other Large White/Yorkshire populations: 
0.26 ± 0.07 (Bunter et al., 2010), 0.30 ± 0.03 (Saintilan 
et al., 2013), and 0.32 ± 0.05 (Do et al., 2013). The 
changes of heritabilities with time are consistent with 
the assumption that different genes can be associated 
with FCR at different stages of gro,\th, as suggested 
by Shirah et al. (2013) for residual FI and FCR. 

For the SAD and RR models, the genetic correla
tions decreased as the time interval between measure
ments increased. They became negative in the case of 
the RR model, although this is unlikely to reflect the 
tme correlations bet\veen these distant periods. It has 
been previously reported that because the RR model 
cannot handle correlations that asymptotically tend to 
0, it provides biased estimates of the correlations for 
distant time intervals (Jaffrezic et al., 2004). 

In such cases, the correlations become negative, 
as observed in previous studies ( David et al., 2015). It 
should be noted that considering heterogeneous resid
ual variance with time in the RR model did not modify 
these negative value estimates and did not reduce the 
border effects problem (results not shown) . The posi
tive genetic correlations over time estimated with the 
SAD model suggest that efficient animals with low 
FCR values at the beginning of the test period tend 
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to also have a lower FCR toward the middle of the 
test, but more independent results seem to be expected 
toward the end of the test. Hcnryon et al. (2002) esti
mated the genetic correlations between FCR values in 
growing rainbow trout at different time points over a 
215-d period. Most of the correlations \Vere positive 
and high. No reports about such genetic correlations 
for FCR could be found in the literature for pigs. 

Modeling longitudinal data yields more accurate 
EBV due to the inclusion of repeated records over 
time and consideration of the covariance structure of 
the data. (Boligon et al., 2011). However, the main dif
ficulty of selection based on repeated measurement 
analysis is the obtcntion ofas many EBV as time points 

used for the evaluation. The general idea is, therefore, 
to summarize these multiple EBY into a smaller set of 
new composite dimensions with a minimum loss of 
infonnation (Van Der Wcrf et al., 1998), as success
fully applied by Buzanskas et al. (2013). Ideally, 1 or 
2 indexes can capture the individual EBV trajectory 
profiles to case animal selection. 

In the current study, a classification approach was 
used to identify different typical EBV trajectories 
from the SAD and RR approaches, as earlier proposed 
to cluster egg production curves at the phcnotypic lev
el by Savegnago et al. (2011) and milk yield profiles 
at the genetic level by Savcgnago et al. (2016). TI1is 
trajectory classification is proposed in our study as a 
complementary analysis to describe the group tra,jec
tories and better comprehend the animal profiles as 
compared with the selection objectives of a breeding 
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program. To summarize the EBV, vve applied an eigen
decomposition of the genetic covariance matrices 
from the RR and SAD models, as originally applied to 
the matrix of the RR models (Van Der Werf et al., 
1998). l11e eigendecomposition has the advantage of 
accounting for the genetic covariances between weeks, 
which is not the case when using the average of the 
weekly EBV By e:-.iracting the main a'(es of covari
ability among the EBV along time, 1 or 2 eigencom
ponents usually capture almost all the additive genetic 
variation in level and shape of the genetic curve, at 
least when applied to lactation curves (Dmet et al., 
2005; Togashi and Lin, 2006). Our results show that 
the first 2 SBV obtained from the eigendecomposition 
of the matrix of the SAD model provided informa
tion similar to that of the eigendecomposition of the 
matrix from the RR model. These SBV could, there
fore, be similarly interpreted based on the eigenfunc
tions from the matrix or the trajectory classification 
applied to the weekly EBV. As a result, combina
tions of the 2 first SBV are sufficient to describe the 3 
groups of trajectories. It suggests that animals ,vithin a 
trajectory share genetic features that drive the dy1rnm
ics of their feed efficiency during grmvth. 

Despite differences in the estimation of the genet
ic parameters bet\veen the 2 approaches, the selection 
results were very similar for the RR and SAD models 
and could be confirmed by computing correlations be
tween different SBV and with cEBV. In practice , one 
of the SBV ,vas related to the average level of FCR 
during the test period (SBV _SADl and SBV _RR2) 
and the other one was related to the slope of the curve 
over time (SBV _RRl and SBV _SAD2). In spite of 
this high concordance between the 2 approaches, the 
first 2 eigenvectors according to explained only 

about 73°/ci of the genetic variation, which is rather 
lo,ver than for the RR model (90%). 

As expected from earlier studies (Kirkpatrick et al., 
1990; Meyer and Kirkpatrick 2005), the use of the 
matrix and the matrix of the RR model to calculate 
SBV led to very similar results. In the present study, the 
first eigenfunction changed sign with time. This sug
gests that selection for this first component would have 
opposite effects for the intennediate period compared 
with the extreme periods (2 wk at the beginning and 
2 wk at the end of the trajectory). The second eigen
function increased with time and was always positive. 
This means that selection for SBV RRK2 would lead 
to selection in the same direction for all the time points, 
with a higher weight at the end of the testing period in 
comparison with the begim1ing of the period. Due to the 
high correlation between the first SBV obtained from 
the coefficients covariance matrix ( ) 
and SBV _RRl or SBV _SAD2, it confirmed our inter
pretation of SBV _RRl and SBV _SAD2 as indicators 
of the slope of the feed efficiency curve. 

To summarize, SBV can be used for selection pur
poses. To fully evaluate their potential, the estimation 
of genetic correlations with other production traits 
would provide a better insight on the use of the trajec
tories for selection. Indeed, it can be assumed that ani
mals from the A group (low average FCR but a regular 
increase over time) would show a different fat content 
at slaughter than animals from the C group of similar 
average FCR, so selection for different FCR trajecto
ries would consolidate breeding objectives on carcass 
composition. Further comparison of responses to se
lection for the traits of the breeding objective using 
diJferent indexes options (cEBV and two first SBVs 
associated to the two first eigenvector of the matrix G) 
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or a combination of two among them, would clarify 
the possible selection strategies. 

The accuracy of the estimation of genetic param
eters heavily relies on the quantity of data available. 
On the other hand, the cost of individual FI measures 
is high. Therefore, there is a trade-off between parsi
mony, complexity of the analysis, and potential bias, 
so choices need to be made . The goal is, therefore, 
to reduce the duration of the test period for FI with 
a minimum loss of accuracy for animal selection for 
FCR dynamic features, to test more pigs and increase 
the genetic gain (Begli et al., 2016). Wetten et al. 
(2012) proposed to use infonnation on early periods 
of FI combined ,vith infom1ation on growth to reduce 
the test period. In the current study, a similar conclu
sion was reached: the first vveeks of test showed bet
ter correlations to selection criteria obtained with the 
vd10le test period than the middle and the last periods. 
l11e selection accuracy could be increased step,vise 
by extending the evaluation from 5 to 8 wk of dura
tion . Further studies are required to better understand 
the link between the genetic gain, the costs associated 
,vith different strategies, and the changes in prediction 
accuracy due to a combined reduction of the duration 
of the test period and a greater number of pigs tested. 

l11e current study indicates that the SAD model 
is promising for genetic selection: 1) it requires fewer 
parameters to fit the covariance matrices than the RR 
model and 2) it is not associated with the border effect 
problems and negative correlation estimates observed 
with the RR model. The use of SBV is a solution for 
animal selection applicable with the SAD model. The 
results of this study also suggest that a reduction of the 
duration of the FI test period to reduce measurement 
costs is probably feasible to select for feed efficiency. 
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