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Highlights 

 

 European soy beans were processed to produce 4 SBM products by grinding, dehulling 

(NH) or not (H) and subjected to either extrusion (E) or flaking-pressing-cooking (F). 

 Diets were offered to starter and grower broilers in a 2x2 design: processing method (E) vs 

(F) x hulling methods (NH) vs (H). 

 Treatments equally promoted performance and there were no differences in measured 

variables other than a higher GIT development and lower carcass yield in H in comparison 

to NH products. 
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Abstract 

Locally produced, expeller soybean meal (SBM) may be an important constituent of 

European broiler diets in the future. In the present trial 4 SBMs were produced from European 

grown soybeans, using different processing methods; this is the first time that the combination of 

these methods has been applied. Starter (d0-14) and grower (d15-28) diets were offered to 288 Ross 

308 male broilers in a 2x2 design: 2 processing methods ((Extrusion-pressing (E) vs Flaking-

pressing-cooking (F)) x 2 hulling methods ((with hulls (H) vs no hulls (NH)). Variables measured 

consisted of average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio, 

apparent ileal dry matter (DM) and crude protein (CP) digestibility, jejunal histomorphometry at 

d14 and d28 and ileal digesta viscosity at d28 of age. In addition, carcass and carcass part yield, 

organ weight, and empty gastrointestinal tract  weight and length per small intestinal segment were 

assessed at d28. Processing method did not affect any of the variables tested. On the other hand, 

hull presence increased (P < 0.05) ADFI over the starter period, but not over the grower period. 

Presence of hulls increased proventriculus, gizzard and jejunum weight, and reduced carcass yield 

at d28 of age, likely due to the higher fibre content. Method of processing and hulling significantly 

interacted (P < 0.05) for ADFI and ADG at the end of the starter period, being highest for the E/H 

treatment, but overall broiler performance was similar between dietary treatments. Similarly, small 

intestinal architecture and DM and CP digestibility were not affected by dietary treatments at either 

d14 or d28 post hatch. Although there was some variation in soybean protein solubility and trypsin 
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inhibitors amongst SBM products these factors did not appear to affect any of the measured 

variables. In conclusion, all 4 methods of production resulted in comparable results in relation to 

performance variables. Hull removal did not confer a significant advantage, aside from increased 

carcass yield, possibly due to the adaptive growth of the gizzard and proventriculus. 

 

Keywords: extrusion, flaking, hulling, European grown soybean meal, broiler, digestibility 

 

 

1. Introduction 

Soybean meal (SBM) represents 61% of the protein sources used to feed livestock, whilst 

the European Union (EU) has a self-sufficiency of 3% for its soybeans and SBM needs, which is 

considered unsustainable for a variety of reasons (Leinonen et all, 2013; Boerema, et al., 2016; 

Zander, et al., 2016). The increased demand for imported soybean, especially by the non-ruminant 

feed industry, is attributed to its high crude protein (CP) content and amino acid (AA) profile, 

which is complementary to that of cereals, and its high AA digestibility (de Visser 2014; Ravindran, 

et al., 2014). Increasing EU production of domestic soybean and processing at medium plants from 

local, non-genetically modified crops may contribute to the reduction of dependency on imported 

SBM (Martin, 2015). Following years of decline, EU soybean production has increased over the last 

years, which is attributed to the change in policy support as well as premium prices for non-

genetically modified soybeans (Eurostat, 2016; European Commission, 2017). However, because of 

the opening up of the European market to imports of biodiesel from third countries and current 

discussions around the Renewable Energy Directive (European Commission, 2009), oil and meal 

markets may be volatile in the next years. Nonetheless, before any investment phase by oil 

operators, the feasibility of small or medium-sized SBM production for use as a local feedstuff must 

be assessed. 
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The classical processing of soybeans involves dehulling, defatting with hexane, treatment 

with equate ethanol under vacuum to eliminate soluble carbohydrates, and drying with ethanol. 

However, hexane is extremely flammable and non-renewable, and is regulated as a hazardous air 

pollutant (O'Quinn, et al., 1997). In addition, solvent extraction requires a considerable capital 

investment, a consistent supply of soybeans to operate continuously throughout and imposes high 

energy consumption (Pacheco, et al., 2013). Although expeller extraction of soybeans is an 

alternative to the use of hexane, performance responses to expeller extracted SBM are rather 

inconsistent and suggest variations in nutritional value depending on the seed source and the 

process used (Karr-Lilienthal et al., 2006; Opapeju et al, 2006).  

In the present study alternative processes for the production of expeller SBM from European 

grown soybeans were compared. Following grounding, soybeans were dehulled or not and then 

either extruded or flaked and cooked and finally pressed to extract the oil, resulting in four SBM 

products. This is, to our knowledge, the first time the combination of these processing and hulling 

methods has been applied. SBM products were then incorporated into broiler starter and grower 

diets to compare their effect on performance, digestibility as well as organ and gastrointestinal tract 

(GIT) development. Based on the analysed soybean potassium hydroxide, KOH solubility index 

and trypsin inhibitor units (TIU; mg/kg) we hypothesised that diets incorporating the dehulled, 

flaked and cooked SBM product would result in superior performance and digestibility. 

Furthermore, we hypothesized that hull presence would penalise performance variables, due to the 

potential effects of the increased fibrous content deriving from soy hulls on GIT development and 

nutrient digestibility. 

 

2. Material and methods 

2.1 Animals and husbandry 

All procedures were approved by the Animal Welfare and Ethical Review Body (AWERB) 

of Newcastle University. Two-hundred and eighty-eight male Ross 308 day old chicks were 
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obtained from a commercial hatchery and were housed in a windowless, thermostatically controlled 

building in 24 pens of 1.7 m2. Each pen was equipped with a tube feeder and a bell-drinker, and 

wood shavings were used as litter to a depth of 5cm. Birds had ad libitum access to feed and water 

throughout the trial. Temperature at pen level was monitored daily and maintained to meet Aviagen 

recommendations (Aviagen, 2014), starting at 34 °C at chick placement and gradually reduced to 20 

°C by 25 days of age. Light intensity at pen level ranged from 80 to 100 lux, whilst a lighting 

schedule of 23L:1D was applied for the first 7 days of age and switched to 18L:6D for the 

remainder of the trial.  

 

2.2 Soybean meal products and diets 

The soybeans (var. Ecudor, Euralis Semences, Lescar, France) were grown near Toulouse in 

the South of France and yielded around 3000 kg/ha; they were harvested in September 2015. A 

small quantity of 4200 kg of soybeans was processed at the OLEAD technology platform (Pessac, 

France), following the methods detailed by Quinsac et al. (2012) to produce flaked-cooked-pressed 

SBM with hulls (831 kg), or without hulls (634 kg), and extruded-pressed SBM with hulls (708 kg) 

or without hulls (718 kg). Processing parameters of the soybeans for the production of the 

experimental SBM products are outlined in Table 1. Briefly, soybeans were ground using a 

cylindrical grinder with corrugating rolls (Damman-Croes, Roeselare, Belgium), and were then 

dehulled or not with a cleaner separator (D50, Ets Denis, Brou, France). The two products were 

either extruded using single-screw extrusion (FEX1, France extrusion) at 140°C at around 100 kg/h, 

or cooked (horizontal cooker, Olexa, Arras, France) at 150°C for 3600 seconds after flaking with 

contra-rotating smooth cylinders. All beans were then pressed (MBU 75, Olexa, arras, France) to 

extract the oil and the quality of the SBMs was determined (Table 2). Following processing of the 

soybeans, SBM products were transported to UK for their incorporation to the starter and grower 

broiler diets. 

ACCEPTED M
ANUSCRIP

T



6 
 

Raw soybeans and SBM products were analysed at a COFRAC accredited commercial 

laboratory of Terres Inovia (Ardon, France) for dry matter (DM) (ISO 665 for beans and 771 for 

meals, respectively), crude protein (CP) (ISO 5983-2), crude fat (NF V03-908 for beans and ISO 

22630 for meals), crude fibre (NF V03-040), KOH protein solubility (ISO 14244). Trypsin inhibitor 

contents [1 TIU/mg = 1.9 trypsin inhibitor activity (TIA) mg/g] (TIU/mg) were analysed at a 

COFRAC accredited commercial laboratory (InVivo Labs, France) using the AOCS Ba 12-75 SN 

method (Table 2). Total, soluble and insoluble non starch polysaccharides (NSP) and their 

constituent sugars were determined as alditol acetates by gas-liquid chromatography (GLC) for 

neutral sugars and by colorimetric method for uronic acids using the modified Uppsala method 

(Knudsen, 1997).  

Thereafter, starter (d0-14) and grower (d15-28) mash diets were formulated deriving from 

the 4 SBM products (2 processing methods ((Extrusion-pressing (E) vs Flaking-pressing-cooking 

(F)) x 2 hulling methods ((with hulls (H) vs no hulls (NH)). Synthetic AAs were added to cover 

limiting EAA requirements at the same level on a digestible AA basis for all starter or grower diets 

(Table 3). Differences in AME of the 4 dietary treatments were accounted for by supplementation 

of soybean oil. All diets contained titanium dioxide (0.5%) as an indigestible marker. All diets were 

analysed at a UKAS accredited commercial laboratory to the internationally recognised standard for 

competence ISO/IEC 17025:2005 (Table 3; Sciantec Analytical Services, Cawood, UK). Briefly, 

DM was measured by determining the loss in weight of the feed sample after heating at 103 - 105°C 

for 3 hours. Crude fat was determined by extraction with petroleum ether and total fat by acid 

hydrolysis followed by petroleum ether extraction. CP was determined with the Dumas method on a 

LECO FP-528 Nitrogen Analyser (Leco Instruments UK, Cheshire), Crude fibre and acid detergent 

fibre (ADF) using an Ankom 220 Analyser (Ankom, Technology, Fairport, NY, USA). Ash was 

determined gravimetrically after incinerating the sample at 510 °C for 4 hours. TiO2 analysis in 

feed was according to the method described by Vogel (1961). Neutral detergent fibre (NDF) was 

estimated by enzymatic gravimetry.  
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2.3 Experimental design and sampling 

Upon arrival at the facilities birds were randomly allocated to one of four diets, each 

containing one of the four SBM products (E/H, E/NH, F/H and F/NH). Starter diets were offered 

from d0-14 and grower diets from d15-28. Each treatment was replicated in 6 pens with 12 birds per 

pen. Pen body weight (BW) was measured at arrival and pen BW and average daily feed intake 

(ADFI) at the end of the starter and grower period. 

Three randomly selected chickens with a BW close to the pen average were individually 

weighed at d14 and d28 of age and removed from their home pens. Following euthanasia with a 

lethal injection of sodium pentobarbitone (Euthatal®, Merial, Harlow, United Kingdom), the ileum 

was excised, cut in 3 smaller segments and intestinal contents were collected from the lower 2/3 of 

the ileum up to 2cm from the ileocecal junction with gentle finger stripping and pooled for each 

pen. Afterwards 5 cm of intestinal tissue were excised from one of the three birds from the region 

immediate to Meckel’s diverticulum, and were fixed in 10% buffered formalin for morphometric 

assays under light microscopy. From the birds killed at d28 of age, a subsample of pooled ileal 

digesta from the upper 1/3 of the ileum were also collected and immediately stored at -80 °C 

pending determination of viscosity. An additional bird per pen was selected at d28 of age and its 

gastrointestinal tract and organs were removed to obtain the empty gizzard and proventriculus 

weight, full ceca weight and liver and pancreas weight. In addition, the length of duodenum, 

jejunum and ileum were determined along with the weight of each segment following finger 

stripping. Subsequently, the carcass was de-feathered, its shanks, legs and head removed and 

dissected to its parts and the weight of the breast muscle, thighs and wings were determined. 

 

2.4 Histology 

Excised, formalin-fixed intestinal sections from the duodenum and jejunum were dehydrated 

through a series of graded ethanol baths followed by xylene in a Shandon™ Excelsior™ ES Tissue 
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Processor (Thermo Fisher Scientific Inc., Waltham, Massachusetts), before being embedded in 

paraffin wax, sectioned at 4 µm and stained with haematoxylin/eosin. Histological sections were 

examined under a Zeiss Primostar light microscope and images were captured using ZEN imagine 

software (Zeiss Germany, Oberkochen, Germany). Images were viewed to measure morphometric 

features of the intestinal structure at 10× magnification. From sections, the villus height (VH) and 

the crypt depth (CD) were determined using ImageJ (NIH) software (Schneider, et al., 2012). The 

VH was estimated by measuring the vertical distance from the villus tip to the villus-crypt junction 

for 10 villi/section, and the CD by the vertical distance from the villus-crypt junction to the lower 

limit of the crypt, for 10 corresponding crypts/section. The ratio between VH:CD was calculated 

(VCR). 

 

2.5. Laboratory analyses 

Frozen ileal digesta samples originating from the upper 1/3 of the ileum were thawed in a 

water bath at 40 °C. After defrosting the samples were centrifuged (with 12 000 × g for 10 min), 0.5 

ml of supernatant was then loaded to a Brookfield Digital Viscometer (Model LDVI+CP, 

Brookfield, Engineering Laboratories, Stoughton, MA) with a plate-plate geometry and a gap of 2 

mm appropriate for small volumes to carry out digesta viscosity measurements. The temperature of 

the sample was maintained at 40°C during the measurements. The results are presented as solution 

viscosity in centipoise (CPs). The ileal digesta samples collected from the lower 2/3 of the ileum 

were freeze dried overnight and along with samples of the diets, and were ground to pass through a 

0.5-mm sieve and stored in airtight plastic containers at −20°C pending chemical analyses. All 

samples were analysed for CP with the Dumas combustion method using Leco's CNS 2000 analyser 

(Leco Instruments UK, Cheshire), and titanium according to the methodology of Short et al., 

(1996). 

 

2.6 Calculations and statistics 
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All statistical analyses were conducted in SAS 9.4 (SAS Institute, Cary, NC). For all 

statistical assessments pen was considered the experimental unit and data were analysed with PROC 

GLM with processing method and hulling as fixed factors and their interaction. Weight of carcass 

parts, organs and GIT segments as well as length of small GIT segments, obtained at d28 of age 

were expressed as a ratio to the sampled empty carcass weight of the slaughtered bird. When 

significant differences were detected, treatment means were separated and compared by the Tukey’s 

multiple comparison test. Significance was determined at P < 0.05. All values are expressed as 

model-predicted least square means with the SEM. 

 

3. Results 

3.1 Performance 

There were two mortalities over the production period, classified as starve -outs, on d2 and 

d4 of age for EH and FNH, respectively. Effects of processing method, hulling method and their 

interaction on performance variables are presented in Table 4. There was no effect of processing 

method on any of the performance variables. Hulling method affected ADFI (P = 0.032) during the 

starter period, which was significantly higher for birds when hulls were present in the diet rather 

than not. However, hulling method did not affect performance neither during the grower period nor 

over the whole growing period. Processing method and hulling method interacted for average daily 

gain (ADG) during the starter period (P = 0.004), being significantly lower (P < 0.05) for E/NH 

and F/H, compared to E/H treatments. Furthermore, processing method and hulling method 

interacted for ADFI during the starter period, which was significantly lower for the E/NH than the 

E/H treatment. 

 

3.2 Ileal digestibility and digesta viscosity 
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Effects of processing method, hulling method and their interaction on ileal apparent CP and 

DM digestibility and ileal digesta viscosity are presented in Table 5. There was no significant effect 

of processing method, hulling method or their interaction, on any parameter. 

 

3.3 Carcass and carcass part yields 

Effects of processing method, hulling method and their interaction on carcass and carcass 

part yields are presented in Table 6. There was no significant effect of processing method, hulling 

method or their interaction on carcass part yield at d28. However, hull presence significantly 

reduced carcass yield (P < 0.05). 

 

3.4 Histology 

Effects of processing method, hulling method and their interaction on VH, CD and VCR are 

presented in Table 7. There was no effect of processing method, hulling method or their interaction 

on VH, CD and VCR.  

 

3.5 Gastrointestinal tract development 

Effects of processing method, hulling method and their interaction on GIT and organ weight 

and on small intestinal segment length are presented in Table 8. Processing method did not affect 

GIT and organ measurements; this was also the case for the interaction between processing method 

and hulling method. However, hull presence significantly increased gizzard, proventriculus and 

jejunal weight (P < 0.05). 

 

4. Discussion 

The motivation for this study was the reliance of European broiler systems on imported 

SBM and the possibility of introducing novel SBM products from locally grown soybeans (Watson 

et al 2017). Sustainability is an important aspect of the evaluation of alternative sources of protein 
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for non-ruminant farm animals. Feed provision represents the poultry industry's biggest 

environmental issue (Leinonen et al., 2012; Tallentire et al., 2017), exacerbated by the inclusion of 

imported soybeans from South America where they are grown in vast monocultures on land 

obtained via deforestation (de Visser et al., 2014; Kebreab et al., 2016). The growing concern about 

the production systems of soy and impact that they have on deforestation and soil decline has led to 

initiatives for sustainable soy, like the RTRS soy (The Round Table on Responsible Soy) and the 

Danube Soy initiative (Donau Soja Association). Partially defatted SBM could have an additional 

economic advantage against imported SBM related to its non GMO character and its local origin 

(Le Cadre et al, 2015).  

Extrusion, or cooking processes were used in combination with dehulling and pressing to 

produce four partially defatted SBMs from the same batch of beans. The crushing costs and net 

margins of both E and F methods can be estimated as rather similar, but a Flaking cooking pressing 

unit may also be used for sunflower and rapeseed meal oil extraction (Quinsac et al, 2012). The 

chemical characteristics of these SBMs are in good agreement with the meal quality of the F/NH 

meals produced with soybeans of the 2010 French harvest in the study reported by Labalette et al. 

(2013). As expected, the E process was more effective than F for de-oiling the meals. All 

combinations of preparation and processing methods resulted in acceptable levels for KOH protein 

solubility index and residual trypsin inhibitor activity, whereas E was shown to be less effective 

than F for deactivation of trypsin inhibitors in the previous work of Quinsac of al. (2012). However, 

the present processing of SBMs resulted in variable KOH protein solubility index, TIU and fibre 

content of the products. Although the dehulling step resulted in an increase of almost 3 g/100 g 

protein (58.8 and 58.4 g/100 g for E/NH and F/NH products, respectively, and 56.0 and 55.8 g/100 

g for whole E/H and F/H meals, respectively, on a fat free DM basis), diets within a growing stage 

were designed to have the same CP content. On the other hand, dietary levels of NDF and ADF 

were increased in diets which included products with hulls, as expected due to the higher 
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concentration in soluble and insoluble NSP, along with overall lower levels of KOH solubility 

index values and lower TIU values.  

In assessing the quality of the SBM products, it is important that urease or trypsin inhibitor 

activity is analysed in conjunction with protein solubility to obtain an accurate assessment of 

processing adequacy. As far as the TIU values in this experiment were concerned, soybean products 

had 2.6, 3.5, 3.6, and 7.6 TIU/mg for E/H, E/NH, FN/NH and F/NH meals, respectively. TI reduce 

the proteolytic action of the pancreatic enzyme trypsin and chymotrypsin (Liener, 1994), affecting 

protein digestibility and growth rates despite potential increases in feed intake (Perilla, et al., 1997). 

Although heat processing reduces levels of heat labile trypsin inhibitors, it may also adversely 

affect protein digestibility by decreasing the availability of heat-sensitive AA due to the formation 

of Maillard reactions. This is reflected in the KOH protein solubility index which decreases as the 

degree of heat treatment associated with soybean processing increases. It has been suggested that a 

KOH index higher than 85% indicates under processing, whereas a protein solubility index less than 

74% infers overheating (Dozier, et al., 2011). Only the F/NH product had TIU levels above the 

commercial recommendation of 4 TIU/mg which may be attributed to the lower dryer outlet 

temperature measured for the dehulled beans compared to whole beans (90 vs. 97°C). It has been 

previously suggested that even lower levels are required for optimum performance of grower chicks 

(Clarke, et al., 2005). However, the higher TIU levels measured in the F/NH dietary treatment did 

not penalise performance, or digestibility, which may be attributed to its KOH protein solubility 

index value which was the highest among SBM products. Regardless of TIU levels, dietary 

treatments did not differ in terms of small intestinal architecture or pancreas weight; a high level of 

protease inhibitors is known to lead to reduced villi height whilst causing hypertrophy and 

hyperplasia of the pancreas (Leeson and Summers, 2001, Rocha, et al., 2014). 

Contrary to expectations, CP and DM digestibility was not affected by hull presence. In 

terms of their total dietary fibre composition, hulls contain 83.3% total dietary fibre with an 

insoluble to soluble fibre ratio of 5.0 (Dust, et al., 2004). Based on the analysed NSP contents, SBM 
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products contained a similar content of soluble NSP, apart from the lower content of the F/NH 

treatment (≃2 % vs 4 % DM). One would expect that the increased soluble fibre content deriving 

from soy hulls would have resulted in lower digestibility values for CP (Choct, et al., 2010). 

However, this was not observed in the present study, which may be attributed to the fact that diets 

were wheat- rather than corn-based to reflect European feeding practices. Wheat has a higher 

soluble NSP fraction than corn (22 % vs 12 %), mainly in the form of soluble arabinoxylan 

(Knudsen, 2014), which likely negated in part the contribution of soy hull inclusion to the total 

soluble fibre content of the hulled treatments and associated effects on resulting digesta viscosity 

and nutrient digestibility. To that end, the ability of the products to promote performance and 

nutrient digestibility should be further investigated in wheat based diets with xylanase inclusion. On 

the other hand, hulled treatments led to higher proventriculous and gizzard development which 

could be primarily ascribed to their increased total NSP content which predominantly derived by an 

increase in the insoluble NSP content. It has been previously shown that addition of soy hulls at 3% 

in low fibre diets results in increased gizzard development (Jiménez-Moreno, et al., 2009), which 

may contribute to increased grinding of the diets and as a result facilitate DM and CP digestibility. 

A well-developed gizzard has been associated with increased grinding activity, enhanced reverse 

peristalsis, and greater absorption of nutrients (Amerah, et al., 2007). Although effects on 

proventriculus and gizzard development were only assessed at d28 of age, they may have been 

present earlier, thus accounting for the absence of adverse effects of soy hull inclusion on DM and 

CP digestibility at the end of the starter period. Previous studies have indicated that increasing 

dietary fibre levels may induce changes in GIT morphometric features, which nonetheless vary 

according to the type of the fibre used, its level of incorporation, the type of cereal grain used, the 

feed form and particle size of the diet offered (Mateos et al., 2012). In the present study there was 

no difference on villi height, crypt depth or their ratio which are indicative of GIT absorptive 

capacity. However, an increase in relative jejunum empty weight was observed as well as a reduced 

carcass yield which reflects a higher GIT development in birds offered hulled treatments. 
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As far as performance is concerned, the EH dietary treatment group showed ~ 6 % higher 

ADFI in comparison to the E/NH treatment, as well as ≃ 5.5 % higher ADG in comparison to both 

F/H and E/NH treatment groups over the starter period. However, these differences were absent by 

the end of the grower period and over the growing period as a whole. One would expect that hull 

presence would have increased maintenance requirements considering the lower carcass yield 

observed at d28 of age and the higher GIT development, therefore resulting to overall higher FCR. 

In the absence of effects on DM and CP digestibility it is possible that AME digestibility was 

improved although it was not measured in the present trial. 

In this study we concentrated on the performance consequences of the four SBM products. 

Due to the small scale and experimental nature of the study, it was not deemed appropriate to 

conduct an environmental and economic life cycle assessment of their consequences. In conclusion, 

both processing methods of locally produced soybeans resulted in products which equally promoted 

broiler performance over the grower and the overall growing period. Although there were some 

differences in KOH solubility and TIU levels, these were poor predictors of DM and ileal CP 

digestibility. Hulled products resulted in similar performance, which could be ascribed to their 

effect on proximal GIT development. This nonetheless was achieved at an additional cost; slightly 

higher proportions of the hulled products were used to achieve similar CP content. 
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Tables and figures 

 

Table 1. Processing parameters of soybeans for the production of experimental SBM batches 

Extrusion-Pressing 

 Product 

Extrusion step1 Pressing step3 

Throughput rate Last barrel temperature Motor power Oil flow Meal flow Rotation speed Motor power Cage temperature 

kg/h °C kW kg/h kg/h rpm kW °C 

E/NH 115 141 25.0 19 98 15 4.8 98 

E/H 100 138 19.5 14 76 15 5.9 113 

Flaking-cooking-pressing  

 Product 

Cooking step2 Pressing step3 

Cooker exit temperature Steam injection Dryer exit temperature Oil flow Meal flow Rotation speed Motor power Cage temperature 

°C kg/h °C kg/h kg/h rpm kW °C 

F/NH 86 9.7 90.3 26 184 15 7.3 0 

F/H 91 9.5 97.1 19 150 14 5.3 104 

1 Extrusion was obtained with a single-screw extruder (FEX1, France extrusion) of 50-300 kg/h capacity powered by a 30 kW motor with adjustable rotating speed. 

The screw has a diameter of 82 mm and a length 720 mm. The extruder was used with a soybean configuration at 9 rpm. Restriction disks were placed between the 

last screw elements and the die was mounted on a threaded insert allowing adjustment of the gap between the tapered tip of the screw and the die.  
2 At first, a flaking was conducted with contra-rotating smooth cylinders (Croix, France). Distance between rolls was adjusted to obtain flakes without almonds 

residues. The horizontal cooker (Olexa, Arras, France) was composed of two superposed horizontal cylinders of 900 mm in diameter and 2000 mm in length. Each 

stage was heated by 4 resistances of 4 kW, the heat being transported by a thermal fluid circulation in cooker jacket. Inside the cooker, flakes were mixed by a 

helical ribbon. The flakes were dried in the bottom part of the cooker which was connected to a mist extracting fan. Cooker and dryer set temperatures were 145 and 

155 °C respectively and the average length of stay was around 3600 seconds. 
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3 Final pressing of materials was carried with a screw press (MBU75, La Mecanique Moderne, Arras, France). The screw length was 1800 mm and the diameter was 

180 mm diameter in the feed area and 150 mm in high pressure area. The semi-compressing arrangement of the press was used for the tests (non-compressing 

arrangement with addition of the two rings at the last part of the screw). 
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Table 2. Chemical analysis of raw soybeans and of the four soybean products produced through different 

processing (Extrusion pressing vs Flaking-pressing-cooking) and hulling methods (No hulls vs With hulls). 

Proximate analysis (%) 

 

Raw soybeans Extrusion-pressing Flaking-pressing-cooking 

No hulls With hulls No hulls With hulls 

DM 1 86.6 93.85 94.2 92.3 91.3 

Crude fat  17.8 4.8 4.6 5.9 7.8 

CP 1 38.36 52.3 50.1 50.5 46.6 

Soluble proteins (% CP) 36.5 39.7 35.2 44.9 38.2 

Protein solubility KOH (%) 95 75.9 70.2 88.8 82 

Crude fibre 4.8 2.9 5.53 3.19 5.06 

Trypsin inhibitors (TIU/mg) 25 3.5 2.6 7.6 3.6 

Soluble NSP 1 (% DM) - 3.8 3.9 2.2 4.4 

Insoluble NSP 1 (% DM) - 12.6 17.2 15.3 16.9 

Total NSP 1 (% DM) - 16.4 21.1 17.5 21.3 

1 (DM) dry matter, (CP) crude protein, (NSP) non starch polysaccharides. 
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Table 3. Composition of the 4 diets produced through the combination of different processing and 

hulling methods, offered to broilers over the starter (0-14) and grower periods (15-28). 

 

Starter (d1-14)  Grower (d15-28) 

Processing Method 1 E F  E F 

Hulling Method 2 NH H NH H  NH H NH H 

Ingredient (%)          

Maize 10.0 10.0 10.0 10.0  10.0 10.0 10.0 10.0 

Wheat 52.9 51.7 53.2 50.7  56.9 55.3 56.1 53.4 

E/NH 29.0 

   

 25.0 

   E/H  30.0 

  

 

 

26.5 

  F/NH 

  

29.0 

 

 

  

26.0 

 F/H 

   

32.0  

   

29.0 

Soybean oil 3.00 3.20 2.70 2.20  3.50 3.65 3.35 3.00 

Limestone 1.25 1.25 1.25 1.25  1.25 1.25 1.25 1.25 

Monocalcium phosphate 1.25 1.25 1.50 1.50  1.25 1.25 1.25 1.25 

Vitamin and mineral 

premix 3 0.40 0.40 0.40 0.40 

 

0.40 0.40 0.40 0.40 

Salt 0.25 0.25 0.25 0.25  0.25 0.25 0.25 0.25 

Titanium dioxide 0.50 0.50 0.50 0.50  0.50 0.50 0.50 0.50 

L-Lysine HCL 0.40 0.41 0.44 0.43  0.30 0.30 0.30 0.30 

DL-Methionine 0.35 0.35 0.41 0.41  0.35 0.35 0.35 0.35 

L-Threonine 0.15 0.16 0.17 0.17  0.15 0.15 0.15 0.15 

Sodium bicarbonate 0.15 0.15 0.15 0.15  0.15 0.15 0.15 0.15 

Coccidiostat 0.06 0.06 0.06 0.06  0.06 0.06 0.06 0.06 

Calculated composition (%) 

    

 

    AMEn
 
 (MJ/kg) 4 12.79 12.80 12.80 12.80  13.02 13.01 13.04 13.05 

Calcium 0.97 0.98 0.98 0.98  0.92 0.92 0.92 0.93 

Total phosphorous 0.72 0.72 0.72 0.73  0.64 0.65 0.65 0.66 

Available phosphorous 0.48 0.48 0.48 0.49  0.42 0.42 0.42 0.42 

Digestible lys 1.31 1.31 1.32 1.32  1.13 1.13 1.13 1.14 

Digestible met + cys 1.00 1.00 1.00 1.00  0.91 0.91 0.91 0.91 

Digestible thr 0.83 0.83 0.83 0.83  0.76 0.77 0.76 0.77 

Digestible try 0.24 0.23 0.23 0.23  0.21 0.21 0.22 0.22 

Analysed composition (%) 

    

 

    Dry matter 90 90 89.4 89.4  89.1 89.3 89.1 88.9 

Crude protein 23.1 23 22.9 22.8  21.6 21.1 21.8 21.6 

Crude fibre 2.3 2.8 2.2 2.5  2.2 2.7 2.3 2.6 

Ash 7.6 7.2 6.8 6.6  6.2 6.4 7 6.4 

NDF 4 7.8 9.3 7.8 8.8  7.7 8.8 7.8 8.5 

ADF 4 3.1 3.7 3.1 3.5  2.7 3.6 3.1 3.5 

Crude fat 6.5 6.2 6.0 5.5  5.9 6.2 7.2 7.1 

Total oil 7.7 7.4 6.9 6.8  7.0 7.5 8.1 8.0 

Titanium dioxide 0.610 0.631 0.549 0.551  0.530 0.500 0.581 0.531 

1 (E) extruded using single-screw extrusion process at 140°C at around 100 kg/h, (F) flaked and cooked at 150°C for 3600 seconds. 
2 (H) with hulls, (NH) no hulls. 

3 The premix supplied per kilogram of diet: antioxidant, 100 mg; biotin, 0.30 mg; cholecalciferol, 5000 IU/kg µg; folic acid, 2.2 mg; 

menadione, 3.2 mg; niacin, 60 mg; pyridoxine, 5.4 mg; trans-retinol, 13.000IU/kg; riboflavin, 8.6 mg; thiamine, 3.2 mg; dl-α-

tocopheryl acetate 80IU/kg; choline chloride, 1700 mg;; Cu, 16 mg; Fe, 20 mg; I, 1.25 mg; Mn, 120 mg; Mo, 0.5 mg; Se, 300 µg; Zn, 

110 mg. 
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4 (AMEn) apparent metabolisable energy, (ADF) acid detergent fibre, (NDF) neutral detergent fibre.
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Table 4. Effect of soybean meal treatments, produced through the combination of different processing and hulling methods, 

on performance variables of broilers over the starter (d1-14) and grower periods (d15-28). 

Measured responses 1 BW  ADFI  ADG  FCR 

Days of age 0  1-14 15-28 1-28  1-14 15-28 1-28  1-14 15-28 1-28 

Processing Method 2              

 E 37.1  37.8 110.9 74.3  28.3 66.2 47.3  1.33 1.63 1.57 

 F 36.7  37.6 113.1 75.4  28.2 68.0 48.1  1.34 1.63 1.57 

Hulling Method 3              

 NH 37.1  37.2 111.3 74.2  28.2 66.4 47.3  1.32 1.65 1.57 

 H 36.6  38.3 112.7 75.5  28.4 67.9 48.1  1.35 1.62 1.57 

  SEM 0.32  0.34 0.98 0.54  0.30 0.77 0.41  0.013 0.018 0.015 

Processing × Hulling Method              

E 
NH 37.2  36.7a 110.3 73.5  27.5a 65.5 46.5  1.33 1.65 1.58 

H 37.0  38.9b 111.4 75.1  29.1b 66.9 48.0  1.33 1.61 1.57 

F 
NH 37.0  37.6ab 112.2 74.9  28.8ab 67.2 48.0  1.30 1.64 1.56 

H 36.3  37.7ab 114.1 75.9  27.6a 68.9 48.2  1.37 1.62 1.57 

  SEM 0.45  0.48 1.39 0.76  0.43 1.09 0.59  0.019 0.025 0.021 

Source Probabilities 

  Processing Method 0.341  0.705 0.116 0.184  0.832 0.114 0.157  0.783 0.965 0.804 

  Hulling Method 0.298  0.032 0.295 0.104  0.660 0.186 0.164  0.094 0.279 0.975 

  Processing × Hulling Method 0.571  0.043 0.758 0.698  0.004 0.913 0.293  0.090 0.709 0.513 

a,b Means within a row with different letters differ significantly (P < 0.05). 

1 (BW) body weight, (ADFI) average daily feed intake, (ADG) average daily gain, (FCR) feed conversion ratio. 

2 (E) extruded using single-screw extrusion process at 140°C at around 100 kg/h, (F) flaked and cooked at 150°C for 3600 seconds. 

3 (H) with hulls, (NH) no hulls. 
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Table 5. Effect of soybean meal treatments, produced through the combination of different processing and 

hulling methods, on the coefficient of apparent ileal dry matter (DM) and crude protein (CP) digestibility at 

the end of the starter (d14) and grower period (d28) and on ileal viscosity at the end of the grower period. 

 

DM  CP  Viscosity (Cps)  

Days of age 14 28  14 28  28 

Processing Method 1        

 E 0.709 0.727  0.842 0.858  5.93 

 F 0.711 0.723  0.824 0.837  5.48 

Hulling Method 2        

 NH 0.720 0.724  0.834 0.842  5.68 

 H 0.700 0.726  0.832 0.852  5.73 

  SEM 0.0107 0.116  0.064 0.091  0.24 

Processing × Hulling Method        

E 
NH 0.723 0.728  0.843 0.855  5.76 

H 0.695 0.727  0.840 0.860  6.10 

F 
NH 0.717 0.720  0.825 0.830  5.60 

H 0.705 0.726  0.823 0.843  5.37 

  SEM 0.0151 0.0164  0.0090 0.0130  0.33 

Source Probabilities 

  Processing Method 0.906 0.785  0.069 0.118  0.203 

  Hulling Method 0.201 0.877  0.778 0.486  0.881 

  Processing × Hulling Method 0.615 0.861  0.958 0.751  0.414 

1 (E) extruded using single-screw extrusion process at 140°C at around 100 kg/h, (F) flaked and cooked at 

150°C for 3600 seconds. 

2 (H) with hulls, (NH) no hulls. 
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Table 6. Effect of soybean meal treatments, produced through the combination of different processing and 

hulling methods on carcass yield and carcass part yield (% of carcass weight) at d28 of age. 

 Carcass yield (%) Breast meat (%) Wing (%) Thigh (%) 

Processing Method 1     

 E 67.1 33.6 11.7 28.2 

 F 67.8 34.1 11.7 27.5 

Hulling Method 2     

 NH 68.9 33.8 11.5 27.4 

 H 66.0 33.9 11.9 28.2 

  SEM 0.84 0.64 0.27 0.48 

Processing × Hulling Method     

E 
NH 68.9 34.0 11.5 27.5 

H 65.3 33.2 11.9 28.8 

F 
NH 68.9 33.6 11.5 27.3 

H 66.7 34.6 11.8 27.6 

  SEM 1.12 0.90 0.38 0.68 

Source Probabilities 

  Processing Method 0.616 0.540 0.936 0.294 

  Hulling Method 0.023 0.909 0.342 0.260 

  Processing × Hulling Method 0.550 0.342 0.963 0.483 

1 (E) extruded using single-screw extrusion process at 140°C at around 100 kg/h, (F) flaked and cooked at 

150°C for 3600 seconds. 

2 (H) with hulls, (NH) no hulls. 
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Table 7. Effect of soybean meal treatments, produced through the combination of different processing and 

hulling methods on jejunal histomorphometry at the end of the starter (d14) and grower period (d28). 

Days of age 14  28 

Measured responses 1 VH (μm) CD (μm) VCR  VH (μm) CD (μm) VCR 

Processing Method 2        

 E 494 75.5 6.80  748 99.8 7.85 

 F 502 78.6 6.65  773 101.9 7.89 

Hulling Method 3        

 NH 509 77.3 6.85  776 104.9 7.78 

 H 487 76.8 6.60  745 96.8 7.95 

  SEM 21.2 2.52 0.237  29.6 4.64 0.198 

Processing × Hulling Method        

E 
NH 491 77.4 6.67  775 102.1 8.03 

H 497 73.7 6.92  722 97.5 7.67 

F 
NH 528 77.3 7.03  778 107.6 7.53 

H 477 79.9 6.28  768 96.1 8.24 

  SEM 30.0 3.56 0.335  41.8 6.6 0.280 

Source Probabilities 

  Processing Method 0.786 0.404 0.676  0.569 0.757 0.896 

  Hulling Method 0.476 0.886 0.462  0.457 0.235 0.546 

  Processing × Hulling Method 0.354 0.389 0.153  0.608 0.609 0.068 

1 (VH) villi height, (CD) crypt depth, villi height: crypt depth ratio (VCR). 

2 (E) extruded using single-screw extrusion process at 140°C at around 100 kg/h, (F) flaked and cooked at 

150°C for 3600 seconds. 

3 (H) with hulls, (NH) no hulls. 
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Table 8. Effect of soybean meal treatments, produced through the combination of different processing and hulling methods on intestinal segment 

length and weight relative to eviscerated carcass weight at the end of the grower period (d28) (cm/kg and g/kg of carcass weight, respectively). 

Measured responses 1 Duo L Jej L Ile L Duo W Jej W Ile W Pro W Giz W Liv W Pan W Cec W 

Processing Method 2            

 E 27.9 70.3 72.8 11.2 20.4 16.7 6.90 28.1 35.1 3.54 16.4 

 F 30.6 73.6 77.2 10.6 19.8 16.5 7.27 31.0 31.8 3.50 16.1 

Hulling Method 3            

 NH 28.4 70.6 74.4 10.4 18.8 16.7 6.55 27.9 32.8 3.58 15.9 

 H 30.1 73.3 75.7 11.4 21.5 16.5 7.61 31.6 34.1 3.46 16.5 

  SEM 1.47 3.03 3.01 0.47 0.68 0.69 0.302 1.20 1.47 0.20 0.74 

Processing × Hulling Method            

E 
NH 27.5 69.0 72.8 10.1 18.6 15.8 6.47 27.2 33.0 3.33 15.2 

H 28.4 71.6 72.9 12.3 22.2 17.5 7.32 29.8 36.2 3.75 17.6 

F 
NH 29.4 72.2 76.0 10.6 19.0 17.5 6.62 28.6 32.6 3.83 16.6 

H 31.7 75.0 78.5 10.6 20.7 15.4 7.91 33.4 31.0 3.17 15.5 

  SEM 2.09 4.29 5.15 0.67 0.96 0.99 0.427 1.70 2.09 0.287 1.04 

Source Probabilities 

  Processing Method 0.225 0.447 0.315 0.387 0.564 0.852 0.394 0.156 0.127 0.670 0.809 

  Hulling Method 0.449 0.532 0.762 0.123 0.012 0.858 0.021 0.041 0.536 0.479 0.591 

  Processing × Hulling Method 0.732 0.985 0.784 0.127 0.346 0.067 0.606 0.509 0.179 0.129 0.103 

1 (Duo) duodenum, (Jej) jejunum, (Ile) ileum, (L) length, (W) weight, (Pro) proventriculus, (Giz) gizzard, (Liv) liver, (Pan) pancreas, (Cec) ceca. 

2 (E) extruded using single-screw extrusion process at 140°C at around 100 kg/h, (F) flaked and cooked at 150°C for 3600 seconds. 

3 (H) with hulls, (NH) no hulls. 
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