

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems Feed-a-Gene seminar associated with annual FEFAC meeting

EU produced alternatives to reduce EU's dependency on soya bean import for the animal feed industry : Nutritive value of partly defatted soybean meals

<u>Eric Royer¹</u>, Patrick Carré², Veronika Halas³, Panagiotis Sakkas⁴, Paul Bikker⁵, Alain Quinsac⁶, Ilias Kyriazakis⁴, Knud Erik Bach Knudsen⁷,

¹Ifip-institut du porc, ²Olead, ³Kaposvár University, ⁴Newcastle University, ⁵Wageningen University & Research, ⁶Terres Inovia, ⁷Aarhus University

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531.

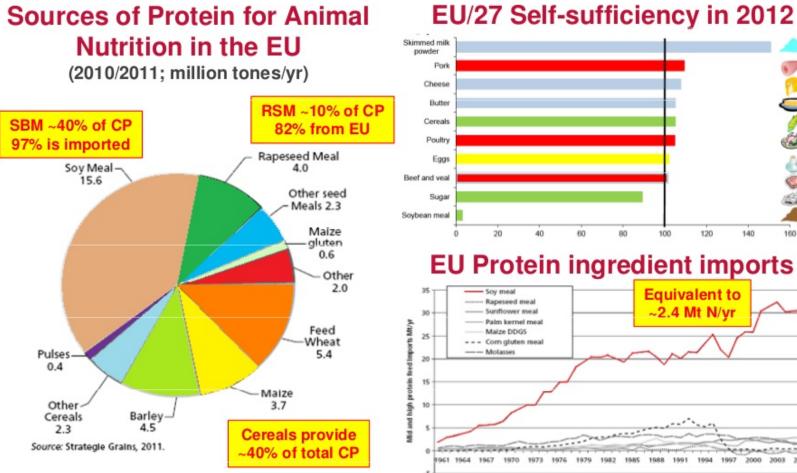
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

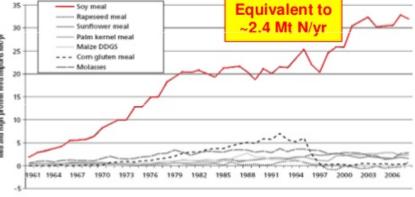
Context

Sponsor Day, 15th-16th May 2014

IRTA

3

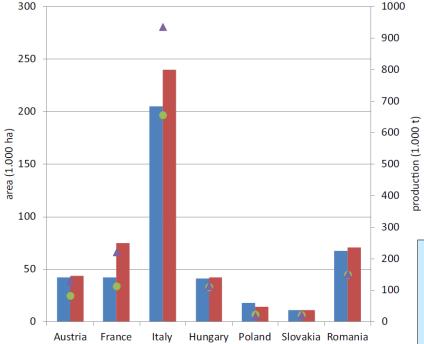

160 in %


120

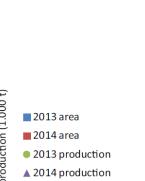
140

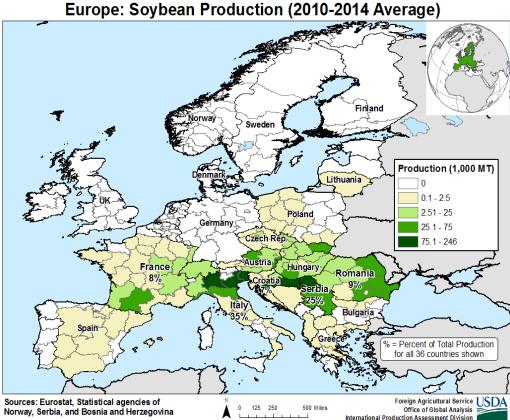
100

David Torrallardona, 2014


Source: FAOSTAT, 2011

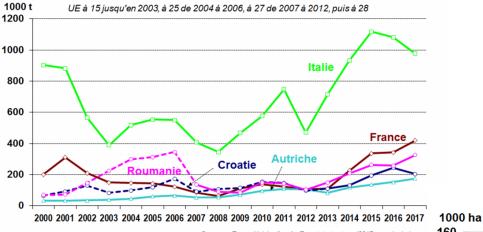
FAO (2012); FEFAC (2012)


9 October, 2019


Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

- Main EU soybean-producing countries (> 10000 ha)
- source: Copa-Cogeca.

Context : European soybean crops



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Context : Evolution of European soy surfaces

Production de soja dans l'UE : principaux pays

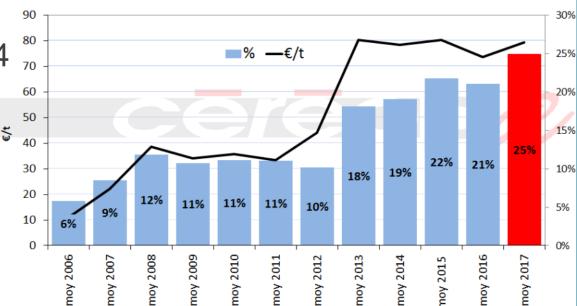
Sources : Terres Univia d'après Eurostat et autres (2017 : provisoire)

Surfaces de soja en France

9 October, 2019

Sources: SCEES/SSP

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

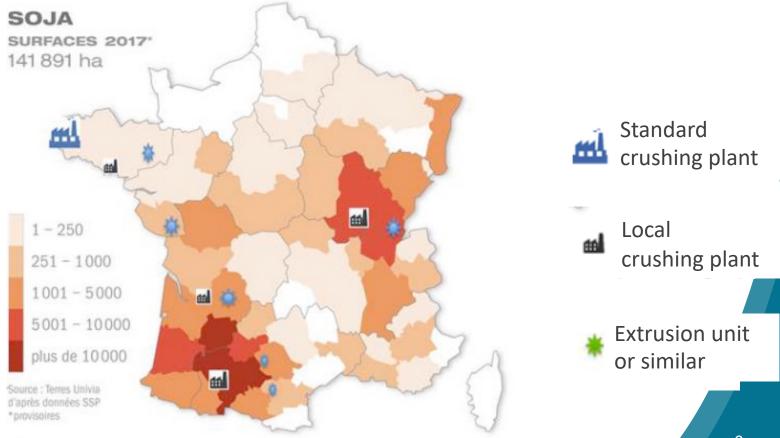

Context : 7 demand for non-GM soybean

EU 2015

Non-GM ≥ 10% of soybean equivalent imported into EU (3.4 Mt) [EU Joint report 2015]

France 2019

Non-GM = 15% ; .45 Mt, 200 000 ha [Terres Univia, 2019]



TOURTEAU DE SOJA 48% DELIVRE MONTOIR PRIME "non ogm"/STANDARD

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Context: new local crushing plants

9 October, 2019

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Study context: process of soybean meals

Main goal: inactivation of trypsin inhibitors (TI)

- Full fat beans
- Partly defatted soymeal
- Totally defatted soymeal

- = extruded or toasted
- = thermal treatment + pressing
- = solvent extraction

Processing of soybeans in medium-sized crushing plants from local and GMO-free crops

nutritional and economic values ?

Study context : methods to process soymeal

- Which process for partly defatted soymeals ?
 - Heat treatments before pressing
 - Extrusion-Pressing (EP) vs Flaking-Cooking-Pressing (FCP)
 - Similar costs, well-known technologies
 - Better TI inactivation with FCP
 - Better oil extraction with EP
 - Partial performance results for EP (chicken), not for FCP
 - Incorporation % and interest price in diet formulations ?

Effect of <u>dehulling</u> on CP % and digestibility ?

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

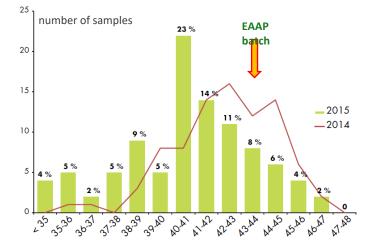
FaG study: evaluate extrusion-pressing & flaking-pressingcooking with European soybeans

• One batch of soybeans \rightarrow 2 x 2 factorial design \rightarrow 4 products

- extrusion-pressing (EP) vs. flaking-cooking-pressing (FCP)
- preparation of beans with dehulling (D) or not (WB)
- effects of process factors (preparation, temperature) + variations of flow rate/speed + specific mechanical energy

Composition and nutritive values

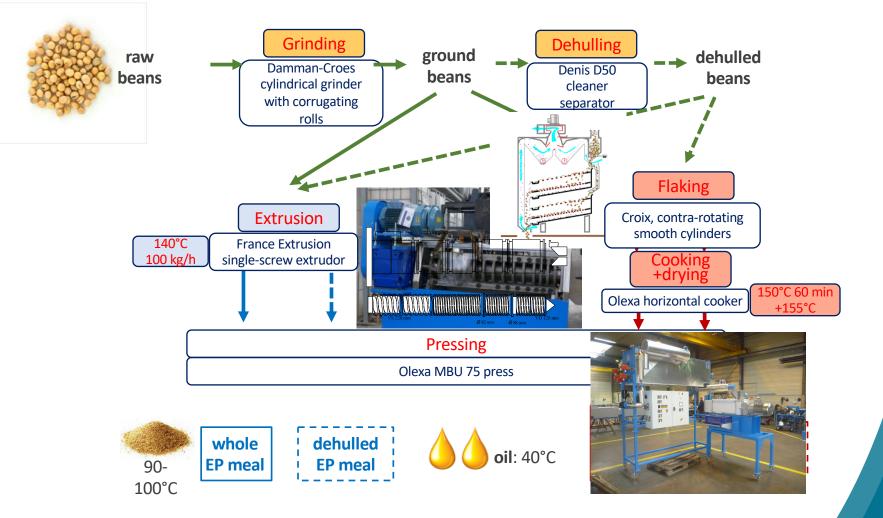
- chemical values
- in vitro rate of degradation (pH-Stat)
- amino acids & reactive lysine contents
- **NIR**
- Animal studies: piglets + broiler chicks



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

- Origin of the raw beans
 - 1 batch of 2015 crop
 - CP = 44 % DM

Protein % of French harvest in 2014 & 2015


protein content (% DM)

	Crude	Water	Oil	Proteins	KOH sol.	Solubility	Trypsin In
	Fiber	content	soxlhet	Kjeldahl	Proteins	Solubility	Un.
	(%/DM)	(%)	(%/DM)	(%/DM)	(%/DM)	%	TIU /mg
EAAP batch	5.6	13.4	20.5	44.3	42.1	95.0	25
France 2015 survey		13.2	21.4	40.7			
Feedipedia base	6.2	11.3	21.4	39.6			

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

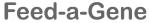
Results : Soymeal experimental products

Chemical composition characteristics

Study recults	Dry Matter	Oil	Prot	teins	Protein solubility	Crude Fiber	Trypsin inhibitors
Study results	% on c	rude weigł	nt basis	% de- oiled DM	% on	crude	TIU / mg
Raw soybean	87	18	38	55.7	95	5	25

FCP-whole beans	91	8	47	55.8	82	5	3.6
EP-whole beans	94	5	50	56.0	70	6	2.6
FCP-dehulled	92	6	51	58.4	89	3	7.6
EP-dehulled	94	5	52	58.8	76	3	3.5

≠ 7°C at dryer exit

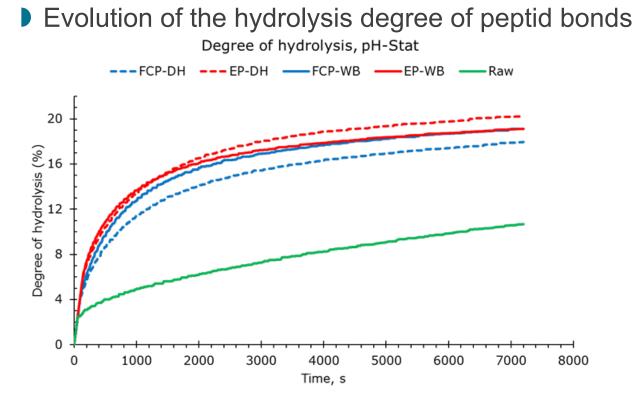

EP vs FCP impact

dehulling impact

-3.2	+ 3.6	+ 0.2
-1.1	+ 1.8	+ 0.3
-1.9	+ 3.9	(+ 2.7)
+ 0.2	+ 2.2	+ 2.8

whole beans dehulled beans

with FCP process with EP process



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results : pH-stat method

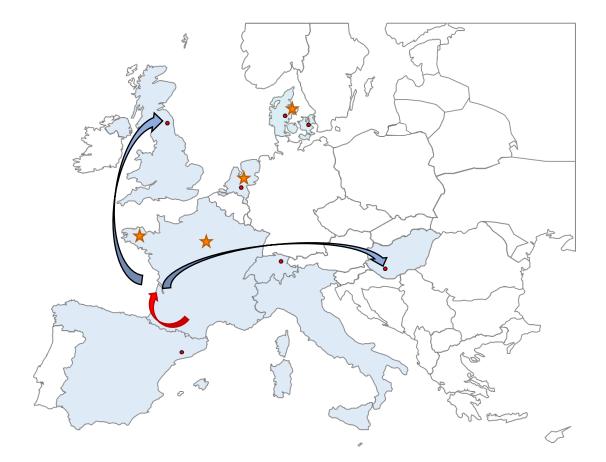
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Discussion of production trial

Good quality products :

CP ≈ 50 % as basis, solubility 70-90 %

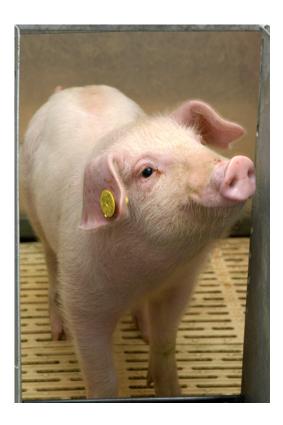
Higher content of trypsin inhibitors for FCP-D : 7.6 UTI/mg


Slightly undercooked : can easily be modified.

In pre-trial with same beans : no meal \geq 4,4 UTI / mg.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Soybean experimental productsSBM production analysis & routing



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Determination of AID and SID of AAs in European soya products with weaned pigs

V. Halas Kaposvár University

WP1	Task: 1.4 - KU
Aim	To determine amino acid digestibility of European soy protein products
Animal model	post mortem study with intact piglets (12-28 kg)
Short description of the experimental design	A total of 2 x 35 intact piglets, 7 treatments , 2 replicates, n=5 x 2 4 weeks performance test, 5 days metabolic study + post mortem digesta sampling
Treatment groups	Soya products with different processes from T1.1 Trt 1: N-free diet Trt 2: Good quality SBM (CP>48%; control) Trt 3-6: European soya product (FCP vs. EP and dehulled vs whole) Trt 7: Casein diet
Response measures	Body weight, feed intake, FCR – 4 weeks trial Apparent and standardized ileal digestibility of amino acids Analysis from feed: proximate analysis, titanium dioxide (marker), amino acids, Ca and P, gross energy in raw materials and mixed feeds From ileal digesta: DM, titanium dioxide, nitrogen, amino acids From feces: proximate analysis, titanium dioxide, gross energy, P
Dietary protein	180g crude protein/kg, Iso-nitrogenous diets in trt 2 to 7 Use the test ingredients as a solei protein source.

Experimental design and time line

Body weigh Start of expe		Body weighing	Body weighin <i>post morten</i> digesta sampli	1
	erformance trial - 4 weeks Feed intake <i>ad libitum</i>	Retention study- 5 - Feed intake: 90% - Fecal and urine co ∳	ad libitum	
Trt	A: control (comercial) SBM	N-free diet		
Trt	A: control (comercial) SBM			CP: flaking cooking pre
Trt	B: FCP dehlluled soybean			extrusion pressing
Trt	C: EP dehulled soybean			
Trt	D: FCP whole soybean			
Trt	E: EP whole soybean			
Trt	F: casein			

cooking pressing

Composition and nutrient content of the experimental feeds (g/kg)

	Control	FCP-d	EP-d	FCP-w	EP-w	Casein
Corn starch	482.7	542.60	555.2	508.9	533.7	624.1
Sugar	50.0	50.0	50.0	50.0	50.0	50.0
Soybean meal*	378.0	355.0	343.0	386.6	358.0	0
Casein	0	0	0	0	0	214.3
Arbocel	0	0	0	0	0	50.0
Sunflower oil	45.0	9.0	8.0	12.0	15.0	15.0
МСР	15.5	15.1	15.5	14.2	15.0	19.5
Limestone	8.5	8.0	8.0	8.0	8.0	8.0
NaCl	4.3	4.3	4.3	4.3	4.3	4.3
DL-Methionine	1.0	1.0	1.0	1.0	1.0	1.0
Premix 1.0%	10.0	10.0	10.0	10.0	10.0	10.0
Ti-dioxide	5.0	5.0	5.0	5.0	5.0	5.0
Total	1000	1000	1000	1000	1000	1000
DM	912	916	918	916	919	925
Crude protein	176	174	170	182	173	175
Ether exctract	50	37	26	44	32	14
Crude fiber	16	12	9	21	18	30 1

Effect of dietary treatments on performance of weaning pigs

	Control	FCP-d	EP-d	FCP-w	EP-w	Casein				
n	10	10	10	10	10	13	RMSE	trt	R	Trt x R
BW0, kg	11.6	11.6	11.6	11.5	11.4	11.8	1.57	.998	.170	.994
BWf, kg	29.0ª	20.6 ^b	28.8ª	27.5ª	28.5ª	20.76 ^b	3.61	.0001	.263	0997
ADG, g/d	621ª	322 ^b	615ª	572ª	608ª	323 ^b	95.7	.0001	.022	.978
	1032ª	894 ^{ab}	879 ^{ab}	944 ^a	949ª	749 ^b	126.6	.0001	0.658	.0004
ADFI, g/d				-						
FCR, kg/kg	1.67ª	2.96 ^b	1.45ª	1.66ª	1.56ª	2.81 ^b	.840	.0001	.786	.422

Effect of dietary treatments on AID of amino acids

	Control	FCP-d	EP-d	FCP-w	EP-w	Casein				
n	10	6	8	10	10	6	RMSE	trt	R	Trt x R
Lys	.753 ^b	.725 ^b	.886ª	.876ª	.848ª	.918ª	.043	.0001	.036	.0001
Met	.766 ^b	.790 ^b	.920ª	.904ª	.903 ^a	.963ª	.039	.0001	.375	.0001
Thr	.695 ^{bc}	.647 ^b	. 796 ª	.808ª	.750 ^{ab}	.845ª	.055	.0001	.136	.0002
Leu	.738 ^c	.636 ^d	.874 ^{ab}	.850 ^{ab}	.831 ^b	.907ª	.046	.0001	.001	.0001
lle	.694 ^b	.612 ^c	.850ª	.823ª	.799 ^a	.873ª	.054	.0001	.877	.0001
His	.773 ^b	.662 ^c	.842 ^{ab}	.826 ^{ab}	.798 ^b	.884ª	.047	.0001	.0001	.149
Val	.698 ^c	.628 ^c	.848 ^{ab}	.827 ^{ab}	.808 ^b	.906ª	.049	.0001	.021	.0001
Arg	.856 ^c	.771 ^d	.932 ^a	.919 ^{ab}	.912 ^{abc}	.882 ^{bc}	.040	.0001	.058	.009

Effect of dietary treatments on SID of amino acids

	Control	FCP-d	EP-d	FCP-w	EP-w	Casein				
n	10	6	8	10	10	6	RMSE	trt	R	Trt x R
Lys	.847 ^b	.819 ^b	.990ª	.965 ª	.946 ª	1.005ª	.043	.0001	.015	.0001
Met	.848 ^b	.872 ^b	1.00ª	.994 ª	.985 ª	1.004ª	.039	.0001	.375	.0001
Thr	.870 ^{cd}	.831 ^d	1.00 ^{ab}	.982 ^{ab}	.936 ^{bc}	1.035ª	.055	.0001	.010	.0001
Leu	.843 ^b	.743 ^c	.990ª	.953ª	.942 ª	1.008ª	.046	.0001	.0001	.0001
lle	.826 ^b	.749 ^b	.997ª	.954 ª	.938ª	1.024ª	.054	.0001	.255	.0001
His	.908 ^c	. 799 ^d	.996 ^{ab}	.957 ^{abc}	.937 ^{bc}	1.044 ^c	.047	.0001	.0001	.129
Val	.820 ^c	.754 ^c	.983 ^{ab}	.947 ^{ab}	.934 ^b	1.019ª	.049	.0001	.011	.0001
Arg	.929 ^c	.835 ^d	1.008 ^{ab}	.982 ^{bc}	.980 ^{bc}	1.062ª	.040	.0001	.025	.007

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Discussion of piglet study

- Pig study → processing temperature of soy products → crucial for protein quality and the level of antinutritional factors (Webster et al., 2003, Quinsac et al., 2012, Karr-Lilienthal et al. al., 2006)
- In our study, use of soymeal as single source of protein ↔ a feed content of 2.7 TIU / mg close to the maximum value of 3.0 TIU / mg proposed for growing pig (Royer et al., 2015)

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Effect on performance of starter and grower broiler chicks.

Panagiotis Sakkas Newcastle University

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Materials and Methods

- 288 birds in a 2x2 design: 2 methods of production (Extrusion pressing (EP) vs Flaking-pressing-cooking (FPC)) x (dehulled vs not dehulled).
 - Birds received coarse mash starter diets between d0-14 and grower diets between d15-28 of age which met or exceeded NRC recommendations .
- Formulated to have the same CP content deriving from the 4 SBM products.
 - SBM: 29-32 % in starter diet, 2-29 % in grower diet
 - Differences in AME of the 4 dietary treatments were covered by supplementation of soy oil.
 - <u>Synthetic AAs were added</u> to cover limiting EAA requirements at the same level on a digestible AA basis in the 4 feeding treatments.
 - Titanium dioxide (0.5%) as an marker.
- Measurements
 - 3 birds per pen DM and CP digestibility and digesta viscosity.
 - 1 bird per pen- jejunum histology .
 - 1 additional bird (D28) per pen GIT development per segment and organ and carcass 9 October, 2019 evaluation.

Results performance

		BW		ADFI			ADG			FCR	
Days of age		0	1-14	15-28	1-28	1-14	15-28	1-28	1-14	15-28	1-28
Process x Hul	I										
treatment											
EP	D	37.2	36.7ª	110.3	73.5	27.5ª	65.5	46.5	1.33	1.65	1.54 ^b
	W	37.0	38.9 ^b	111.4	75.1	29.1 ^b	66.9	48.0	1.33	1.61	1.51 ^a
	D	37.0	37.6 ^{ab}	112.2	74.9	28.8 ^{ab}	67.2	48.0	1.30	1.64	1.52 ^{ab}
FCP	W	36.3	37.7 ^{ab}	114.1	75.9	27.6 ^a	68.9	48.2	1.37	1.62	1.54 ^b
SEM		0.45	0.48	1.39	0.76	0.43	1.09	0.59	0.019	0.025	0.018
Process		0.341	0.705	0.116	0.184	0.832	0.114	0.157	0.783	0.965	0.965
Hull		0.298	0.032	0.295	0.104	0.660	0.186	0.164	0.094	0.279	0.814
Process*Hul	I	0.571	0.043	0.758	0.698	0.004	0.913	0.293	0.090	0.709	0.018

Results Digestibility

Effect of soybean treatment on DM and CP digestibility at the end of the starter (d14) and finisher period (d28).

		D	Μ	СР		
Days of age		d14	d28	d14	d28	
Process x Hull t	reatment					
FD	De-hulled	72.3	72.8	84.3	85.5	
EP	Whole	69.5	72.7	84.0	86.0	
	De-hulled	71.7	72.0	82.5	83.0	
FCP	Whole	70.5	72.6	82.3	84.3	
SEM		1.51	1.64	0.90	1.30	
Source			Probab	ilities		
Process	0.906	0.785	0.069	0.118		
Hull		0.201	0.877	0.778	0.486	
Process*Hull		0.615	0.861	0.958	0.751	

Results Carcass

Effect of soybean treatment on carcass yield and carcass part yield at d28 of age.

		Carcass yield (%)	Breast (%)	Wing (%)	Thigh (%)			
Process x Hull treatment								
Extrusion	De-hulled	68.9	34.0	11.5	27.5			
	Whole	65.3	33.2	11.9	28.8			
Flaking	De-hulled	68.9	33.6	11.5	27.3			
	Whole	66.7	34.6	11.8	27.6			
SEM		1.12						
Source		Probabilities						
Process		0.616	0.540	0.936	0.294			
Hull		0.023	0.909	0.342	0.260			
Process*Hull		0.550	0.342	0.963	0.483			

Results GIT

Effects of soybean treatment on intestinal segment length and weight relative to eviscerated carcass weight at d28 of age (cm/kg and g/kg, respectively).

		Duodenum length	Jejunum length	lleum length	Duodenum weight	Jejunum weight	lleum weight		
Process x Hull treatment									
EP	De-hulled	27.5	69.0	72.8	10.1	18.6	15.8		
	Whole	28.4	71.6	72.9	12.3	22.2	17.5		
FCP	De-hulled	29.4	72.2	76.0	10.6	19.0	17.5		
	Whole	31.7	75.0	78.5	10.6	20.7	15.4		
SEM		2.09	4.29	5.15	0.67	0.96	0.99		
Source		Probabilities							
Process		0.225	0.447	0.315	0.387	0.564	0.852		
Hull		0.449	0.532	0.762	0.123	0.012	0.858		
Process*Hull		0.732	0.985	0.784	0.127	0.346	0.067		

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Discussion of chicken study

- Both technologies equally promoted broiler performance over the starter and grower periods.
- Differences in KOH solubility and TIU levels were poor predictors of DM and CP digestibility.
- Hulled products resulted in similar performance-but lower carcass yield.
- Wheat based-contribution of hulls to viscosity small in comparison
- Furthermore offered as mash rather than pellets-gizzard development may facilitated DM and CP digestibility.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Discussion : effects of process

- All 4 process
 - Robust processes, efficient to inactivate TI
 - High quality products : DM, Fat, protein solubility and TI as expected (Creol, 2010)
 - High protein % : effect of batch ?
- EP vs FCP
 - Better defatting with EP
 - Similar to 2012 French survey (Onidol et al, 2012)
 - Higher CP with EP
 - EP = FCP in 2012 French survey
 - Lower protein solubility with EP, as expected
- Dehulling
 - \blacktriangleright 7 CP % and protein solubility, \cong fat %
 - Interaction between DH and process to confirm ?

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Discussion : effects of processing variables

Extruded-pressed SBs

- Variation in EP SBs quality (Reese & Bitney, 2000)
- Differences in AA composition and protein quality of SBs from 7 U.S. EP plants (Karr-Lilienthal et al, 2006)
- AA dig from EP SBs > solvent SMB (Woodworth et al, 2001; Baker & Stein, 2009) ≠ Opapeju et al (2006)

Related to oil content ? (Cervantes-Pahm & Stein, 2008)

Effect of process parameters

- **7** Extrusion °C \Rightarrow **7** protein %, **9** fat & TI % and protein quality (Webster, 2003)
 - Study optimal °C = 140 °C ≤ previous results = 150°C (Webster, 2003; Quinsac et al, 2005; Karr-Lilienthal et al, 2006)

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Perspectives and conclusions

Local soybean meal sources

- Identity preservation since 1990 (USA)
- Some EP plants in France & Italy (organic soy)
 - Specialized, better gross margin (Onidol, 2012)
- Two FCP plants in France
 - Flexible for other oilseeds
- Suitable context for local plants (Labalette et al, 2013)
 - SB production far from large plants & importing ports

 - \blacktriangleright Value \leftrightarrow premium that actors will accept to pay
- Main market for poultry ? (Le Cadre, 2014)

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Thank you !

Markets

Françoise Labalette

Soy beans evaluation and process

- Jean-Philippe Loison
- Mohammed Krouti
- Piet van Wikselaar

Animal studies

- Sheralyn Smith, Idieberagnoise Oikeh,
- János Tossenberger, Gergő Sudár

Olead, Pessac Terres Inovia, Ardon Wageningen UR

Terres Univia, Paris

Newcastle University Kaposvár University

34