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1 |  INTRODUCTION

The coefficient of inbreeding is defined as the probability that 
two alleles at a given locus are identical by descent (IBD) and 
occurs when related individuals are mated (Malécot, 1948). 
One of the most important consequences of the rise of in-
breeding is the reduction in the mean of a trait with economic 
interest (Falconer & Mackay, 1996). Therefore, obtaining ac-
curate estimates of inbreeding is important for the manage-
ment of animal populations under selection.

Traditionally, inbreeding coefficients have been estimated 
in animal populations from pedigree records. With pedigree 
data, it is also possible to distinguish recent from ancient 

inbreeding by using deterministic or stochastic methods. 
However, genomic inbreeding coefficients can be obtained 
nowadays since the cost of genotyping is no longer a limiting 
factor. Single nucleotide polymorphisms (SNP) are the most 
commonly used genomic markers due to their automated and 
accurate genotyping, and refined pedigree-free inbreeding 
coefficients based on them have been proposed (McQuillan 
et  al.,  2008). Genomic inbreeding coefficients account for 
Mendelian sampling variance (Hill & Weir,  2011) and do 
not depend on quality and completeness of the pedigree. 
Therefore, they are expected to be more accurate than ped-
igree-based coefficients. Among the former, those obtained 
from the proportion of the genome covered by homozygous 
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regions called runs of homozygosity (ROH) allow to distin-
guish recent from ancient inbreeding (Pryce, Haile-Mariam, 
Goddard, & Hayes, 2014).

Correlations between genome- and pedigree-based in-
breeding coefficients are usually provided in the litera-
ture (e.g. Pryce et  al.,  2014; Rodríguez-Ramilo, Elsen, 
& Legarra,  2019; Silió et  al.,  2013). However, when two 
inbreeding coefficients (A and B) evolve similarly along 
generations, it is expected a strong relationship between 
them. Accordingly, the change of inbreeding coefficient A 
is linked to the change of inbreeding coefficient B, and vice 
versa. However, occasionally the association could be coin-
cidental or caused by a third inbreeding coefficient C that 
affects the first two inbreeding coefficients. In other words, 
given three inbreeding coefficients (A, B and C), if there 
is a strong correlation between AC and BC, the correlation 
AB is likely to be also strong. However, the correlation AB 
could be non-meaningful or dependents on the correlations 
AC and BC. This is called a spurious correlation. The oc-
currence of this kind of correlations can increase with the 
augmentation of the definition of different inbreeding coef-
ficients. This highlights the importance of assessing spuri-
ous correlations.

In order to identify significant associations between two 
variables that are independent from a third one, Reverter and 
Chang (2008) suggested an approach that uses first-order 
partial correlation coefficients combined with information 
theory (PCIT) methodology. The objective of this study was 
to detect significant associations between different inbreed-
ing coefficients in a selected population of rabbits using a 
PCIT algorithm.

2 |  MATERIALS AND METHODS

2.1 | Ethical statement

The current study was carried out under a Project License 
from the IRTA Scientific Ethic Committee. Animal ma-
nipulations were performed according to the Spanish Policy 
for Animal Protection, which meets the European Union 
Normative.

2.2 | Data

Animals in the study are a sample of the Caldes line, 
which belongs to IRTA. This line was founded in 1983 
by crossing animals from five New Zealand White lines 
and a California × New Zealand synthetic line. It has been 
selected for litter weight and individual growth rate until 
1992, for growth rate until 2011. From 2011 to 2016, 

no selection was performed on these animals (see Piles 
et al., 2017 for more details). Management of rabbits was 
performed avoiding matings between animals with com-
mon grandparents. The line is currently in its 60th genera-
tion. The average number of animals per generation was 
2,928 with a minimum of 1,351 and a maximum of 5,016 
individuals. The average number of does per generation 
was 179 ranging from 117 to 364 dams. The average num-
ber of sires per generation was 60, ranging from 37 to 97 
sires. The mean generation interval was 292 days, and the 
0.05 and 0.95 quartiles of the absolute value of the age dif-
ference of dam and sire was 1 to 310 days, respectively. 
The pedigree file comprised 173,485 animals, with 1,799 
sires and 8,082 dams from generation 1 to generation 60. 
The pedigree was complete and only individuals from the 
base generation had unknown parents.

DNA was extracted from blood samples from N  =  437 
rabbits born in 2013, 2014 and 2016 (corresponding to gen-
erations 49, 50, 51 and 54). Genotyping was performed using 
the Axiom rabbit array of 200,000 SNP (Affymetrix). No 
pruning of SNP for linkage disequilibrium was performed, 
and after the exclusion of SNP with a minor allele frequency 
(MAF) < 0.05, 114,604 autosomal SNP were available.

2.3 | Inbreeding computation from pedigree

Following Ragab, Sánchez, and Baselga (2015), we defined 
Ft

u
 as the inbreeding of an animal from generation u consider-

ing generation t as the base generation, being t < u. For t = 0, 
F0

u
 represents the inbreeding accumulated since the founda-

tion of the line, which is divided into several components that 
account for the inbreeding accumulated during different peri-
ods of time. Thus, for two given generations t1 and t2, being 
0 < t1 < t2 < u, we defined the inbreeding accumulated until 
generation t1 as F0

0,t1
, the inbreeding accumulated from gen-

eration t1 to generation t2 as F0
t1,t2

 and the inbreeding accumu-
lated from generation t2 to generation u as F0

t2,u
. These 

components are computed from the following formulas de-
rived from the equation for inbreeding in hierarchically struc-
tured populations (Wright, 1922):

Thus,
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The part of F0
u
 accumulated between generations t1 and t2 

corresponds to:

F0
u
, Ft1

u
 and Ft2

u
 were computed using the program inbu-

pgf90 that implements the algorithm developed by Aguilar 
and Misztal (2008). F0

0,t1
, F0

0,t2
 and F0

t1,t2
 were computed 

from the Formulas 1 and 2. Finally, F0
t1,u

=F0
u
−F0

0,t1
 and 

F0
t2,u

=F0
u
−F0

0,t2
.

Three periods of 20 generations were considered, and 
t1 = 20 and t2 = 40. The recent pedigree-based inbreeding 
coefficient (FpedR) is the inbreeding accumulated in the pe-
riod immediately preceding individual birth, the intermediate 
pedigree-based inbreeding coefficient (FpedI) is the inbreed-
ing accumulated during the 20 generations period before 
this, and the ancient pedigree-based inbreeding coefficient 
(FpedA) is the inbreeding accumulated during the first 20 
generations period of time. An animal born before generation 
20 has only accumulated FpedR, calculated as F0

u
, whereas 

FpedI and FpedA are set to 0. An animal born between gen-
erations 20 and 40 has accumulated FpedR, calculated as 
F0

20,u
=F0

u
−F0

0,20
, and FpedI, calculated as F0

0,20
, whereas 

FpedA is set to 0. An individual born after generation 40 has 
accumulated FpedR calculated as F0

40,u
=F0

u
−F0

0,40
, FpedI 

calculated as F0
20,40

=F0
0,40

−F0
0,20

, and FpedA calculated as 
F0

0,20
. Inbreeding coefficients with all pedigree information 

were also calculated (FpedAll).
The software “Grain” (Baumung et al., 2015) version 2.2 

(Doekes et al., 2020) was used to calculate the ancestral in-
breeding coefficients and the ancestral history coefficient 
(see below their definitions). The correlation between the 
inbreeding coefficients calculated using the deterministic re-
cursive algorithm proposed by Aguilar and Misztal (2008) 
with all the genealogy (FpedAll) and the ones obtained with 
the stochastic gene dropping process (Baumung et al., 2015) 
(FpedAllDrop) was high (0.9) with 800,000 replications 
(gene drops). Consequently, only results from FpedAll will 
be shown. The ancestral inbreeding coefficient defined by 
Ballou (1997) was also calculated (Fbal). This coefficient 
can be defined as the probability that any allele in an indi-
vidual has been IBD in previous generations at least once. 
Alternatively, the ancestral inbreeding coefficient according 
to Kalinowski, Hedrick, and Miller (2000) (Fkal) represents 
the probability that any allele in an individual is currently IBD 
and has been IBD in previous generations at least once. It is 
also possible to calculate the recent inbreeding (FpedRDrop) 
as the part of the classical inbreeding coefficient whereby 

alleles are IBD for the first time, and it has been calculated 
as FpedRDrop = FpedAllDrop – Fkal (Doekes et al., 2019). 
Finally, we computed the ancestral history coefficient (Ahc) 
defined as the number of times that a random allele in an 
individual has been IBD in the individual's pedigree. Alleles 
which have experienced inbreeding more often in the past are 
less likely to be deleterious than alleles which have under-
gone IBD less often because those alleles have survived to 
purging, and therefore, it is probably that they have a neutral 
or even positive effect on the selected traits. Thus, high val-
ues of Fbal, Fkal or Ahc are expected to have a positive effect 
on the phenotype.

2.4 | Inbreeding computation from 
genomic data

Genomic inbreeding coefficients based on runs of homozy-
gosity (Froh) were obtained using PLINK v1.90 software 
(Chang et al., 2015). The criteria used for defining a ROH 
were as follows: (a) the minimum number of SNP was 
100; (b) the minimum density was 1 SNP per 50  kb; (c) 
the maximum distance allowed between two consecutive 
homozygous SNP in a run was 1 Mb; (d) a maximum of 
five missing genotypes, and (e) one heterozygous geno-
type within a particular ROH was permitted. The minimum 
length that constituted a ROH was set to >1.25 and <2.5, 
>2.5 and <10, and >10 Mb to reflect ancient (FrohA), in-
termediate (FrohI) and recent (FrohR) ROH-based inbreed-
ing coefficients, respectively. These are the ROH minimum 
sizes that match to 40, 20 and 5 generations from the com-
mon ancestor (Curik, Ferenčaković, & Sölkner, 2014), re-
spectively. Recent inbreeding seems to generate long ROH 
while shorter ROH mainly proceed from IBD segments 
shared by old ancestors, which were fragmented by recom-
bination along generations (Kirin et  al.,  2010). Genomic 
inbreeding coefficients based on runs of homozygosity 
(Froh) were calculated as.

where 
∑

Lroh is the sum of the length of all ROH detected in an 
animal in bp, and Lgenome is the total length of the genome in bp 
covered by SNP and where the criteria used for defining a ROH 
were fulfilled.

Genomic-based inbreeding coefficients were also calcu-
lated as in VanRaden (2008) (Fvan). Then, the inbreeding 
coefficient based on VanRaden (2008) for individual j was 
estimated from the self-coancestry of individual j as
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where g�� is half of the number of copies of the reference allele 
A in the locus l for individual j, pl is the allele frequency, and L 
is the total number of SNP.

The proportion of homozygous genotypes (Fsnp) and the 
proportion of homozygous SNP for the minor allele (PHoMA) 
were also calculated.

Expressing the genotype compressed file size relative 
to its uncompressed form is possible to obtain a measure of 
compression efficiency (CE) as follows:

where Sb and Sa represent the size of the SNP genotype file in 
bytes before and after compression, respectively. This relates to 
the order and proportion of homozygote and heterozygote SNP 
positions (Hudson et al., 2014).

2.5 | Identification of correlations and 
network reconstitution

Pearson's correlation coefficients and first-order partial cor-
relation coefficients combined with an approximation of 
information theory (Reverter and Chang, 2008) were used 
to identify significant associations between the different in-
breeding coefficients. The first-order partial correlation coef-
ficients together with a similarity of information theory were 
calculated with the software PCIT (Watson-Haigh et al., 
2010). The PCIT algorithm contains two distinct steps as 
follows:

2.5.1 | Partial correlations

For every trio of inbreeding coefficients, x, y and z, the three 
first-order partial correlation coefficients are computed as

and similarly for rxz,y and ryz,x.
The partial correlation coefficient between x and y given 

z (here denoted by rxy,z) indicates the strength of the linear 
relationship between x and y that is independent of (uncor-
related with) z. Calculating the ordinary (or unconditional 
or zero-order) correlation coefficient (r��, r�� and r��) and 
comparing it with the partial correlation, it is possible to see 
whether the association between the two inbreeding coeffi-
cients has been sharply reduced after eliminating the effect of 
the third inbreeding coefficient.

2.5.2 | Information theory

For every trio of inbreeding coefficients, and in order to ob-
tain the tolerance level (ε) to be used as the local threshold for 
capturing significant associations, the mean ratio of partial to 
direct correlation is calculated as:

In the context of the network reconstruction, a connection 
or edge between inbreeding coefficients x and y is discarded 
if:

Otherwise, the association is defined as significant, and 
a connection or edge between the pair of inbreeding coeffi-
cients is established.

Once Pearson's correlations and the significant associa-
tions were identified, and the analysis of inbreeding coeffi-
cients networks and its visualization were performed with the 
software Cytoscape 2.8.3 (Shannon et al., 2003).

3 |  RESULTS AND DISCUSSION

The estimates of the different inbreeding coefficients and 
their associations in a selected rabbit population were com-
pared. Table 1 shows the descriptive statistics for the different 
inbreeding coefficients. Average values for pedigree-based 
inbreeding coefficients (FpedA, FpedI and FpedR) decreased 
from ancient to recent inbreeding. However, no similar 
tendency was observed for ROH-based inbreeding coeffi-
cients, where the intermediate coefficients (FrohI) showed 
the highest mean value compared with the ancient (FrohA) 
and the recent (FrohR). This is probably because the major-
ity of ROH fell into the intermediate category. However, it 
should be noted that some parameters used for the definition 
of a ROH and the thresholds imposed during the filtering of 
the genotypic data can influence the number and length of 
ROH (Howrigan, Simonson, & Keller, 2011). Accordingly, 
the number of allowed heterozygous genotypes (Mastrangelo 
et  al.,  2016), and the density of the SNP chip and the fre-
quency of SNP genotyping errors (Ferenčaković, Sölkner, & 
Curik,  2013) can affect Froh. In addition, linkage disequi-
librium, recombination and mutation rate can influence the 
frequency, size and location of ROH (Gibson, Newton, & 
Collins, 2006).

As expected, the mean Fkal was significantly lower 
than the mean Fbal. When comparing recent inbreeding 
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coefficients, the mean FpedRDrop was lower than FpedR, 
and this one was lower than FrohR.

The genomic coefficients not related with ROH were 
very different. The mean values were 0.03, 0.11, 0.63 and 
0.85 for Fvan, PHoMA, Fsnp and CE, respectively. The av-
erage Fsnp (0.63) was much higher than the different Fped 
(ranging between 0.01 and 0.15) because the latter refers to 
a base population where no homozygosity exists. Thus, in 
Fsnp alleles that are IBD and identical by state (IBS) can-
not be distinguished. Several approaches have been proposed 
to express the proportion of homozygous SNP in the same 
scale as pedigree-based coefficients (Toro, García-Cortés, & 
Legarra,  2011) but they (e.g. Fvan) require the knowledge 
of the base population allele frequencies. However, given 
that these frequencies are usually unknown, usually the al-
lele frequencies of the studied population are used providing, 
generally, inaccurate inbreeding estimates (Toro et al., 2002). 
In addition, the different approaches are equivalent to move 
the base population several generations ago (Fsnp), the pres-
ent (Fvan), to the most ancient ancestors known (Fped) or 

to different intermediate points with different ROH lengths 
(Morales-Gonzalez et al., 2020).

Emphasis in the partitioning of the inbreeding coeffi-
cients based on the distance to a common ancestor has been 
performed both for pedigree- and genomic-based inbreeding 
coefficients. This is important because inbreeding arising 
from a distant common ancestor should has less effect on 
fitness and economically important related traits compared 
with inbreeding from a recent common ancestor because nat-
ural and artificial selection along time should act to purge 
deleterious alleles from the population (Holt, Meuwissen, & 
Vangen, 2005).

Figure  1 shows that the highest Pearson's correlations 
between pedigree-based inbreeding coefficients were ob-
served between FpedR, FpedAll, Fkal, FpedRDrop and Ahc. 
Within the genome-based inbreeding coefficients, the highest 
Pearson's correlations were obtained between FrohR, Fsnp, 
PHoMA and CE. Moderate Pearson's correlations (between 
0.32 and 0.45) were observed between the pedigree-based in-
breeding coefficients FpedR, FpedAll, Fkal and FpedRDrop, 
and the genome-based inbreeding coefficients FrohR, Fsnp 
and PHoMA.

The network between the different evaluated inbreeding 
coefficients is difficult to interpret from Pearson's correla-
tions even when positive and negative edges are represented 
separately (Figure 2) because there were 105 different edges 
linking the different inbreeding coefficients.

Different studies show the correlation between pedigree- 
and genomic-based inbreeding coefficients. For example, 
strong correlations between pedigree and genomic-based 
inbreeding coefficients have been reported in human pop-
ulations with complete and reliable pedigree (McQuillan 
et al., 2008). High correlations were also detected in cattle 
populations with complete generation equivalent values larger 
than 5 (Doekes et al., 2019; Purfield, Berry, McParland, & 
Bradley, 2012).

The use of partial correlation and information theory on 
inbreeding coefficients is novel, and the network from PCIT 
allowed clarifying the relation between the different tested 
inbreeding coefficients (Figure  3). Thirty-three significant 
edges were detected in Figure 3.

Genomic-based inbreeding coefficients were not cor-
related with their corresponding pedigree-based inbreed-
ing coefficients, except for the case of recent inbreeding. 
Significant and positive correlations were detected for 
FpedAll, FpedRDrop and FpedR. This cluster also in-
cluded significant and positive correlations with some ge-
nomic-based inbreeding coefficients such as FrohR, Fsnp, 
PHoMA, Fvan and CE. Fvan is mostly correlated with 
PHoMA suggesting that Fvan is giving more importance 
to minor allele frequencies. In fact, the method 2 from 
VanRaden (2008) has been implemented to estimate Fvan, 
and it has been suggested that loci with lower MAF get 

T A B L E  1  Descriptive statistics for the different inbreeding 
coefficients

Metric Mean
Standard 
error Minimum Maximum

FpedA 0.0674 0.0000 0.0674 0.0674

FpedI 0.0535 0.0000 0.0519 0.0547

FpedR 0.0250 0.0010 0.0065 0.1615

FpedAll 0.1459 0.0010 0.1272 0.2824

Fbal 0.8546 0.0007 0.8246 0.8819

Fkal 0.1414 0.0009 0.1221 0.2632

FpedRDrop 0.0054 0.0001 0.0029 0.0200

Ahc 2.7155 0.0088 2.3773 3.0936

FrohA 0.0364 0.0003 0.0191 0.0581

FrohI 0.1485 0.0009 0.0727 0.2043

FrohR 0.0749 0.0017 0.0000 0.2347

Fvan 0.0299 0.0033 −0.1414 0.3521

Fsnp 0.6327 0.0009 0.5884 0.7231

PHoMA 0.1063 0.0004 0.0803 0.1446

CE 0.8458 0.0003 0.8145 0.8584

Abbreviations: FpedA, ancient pedigree-based inbreeding coefficient; FpedI, 
intermediate pedigree-based inbreeding coefficient; FpedR, recent pedigree-
based inbreeding coefficient; FpedAll, pedigree-based inbreeding coefficient 
from all the genealogy; Fbal, pedigree-based inbreeding coefficient from 
Ballou (1997); Fkal, pedigree-based inbreeding coefficient from Kalinowski 
et al. (2000); FpedRDrop, recent pedigre-based inbreeding coefficient 
calculated from gene drop; Ahc, ancestral history coefficient; FrohA, ancient 
ROH-based inbreeding coefficient; FrohI, intermediate ROH-based inbreeding 
coefficient; FrohR, recent ROH-based inbreeding coefficient; Fvan, inbreeding 
coefficient from VanRaden (2008); Fsnp, proportion of homozygous SNP; 
PHoMA, proportion of homozygous SNP for the minor allele; CE, compression 
efficiency.
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higher weight in method 2 than in VanRaden's method 1 
(Toro et al., 2011).

Interestingly, Fkal was also comprised in this group and 
non-significant correlations were observed between Fkal 
and Fbal or Ahc. Parland, Kearney, and Berry (2009) indi-
cated that the correlation between Fkal and Fbal was weak, 
ranging from 0.28 to 0.38. Also Schäler, Krüger, Thaller, and 
Hinrichs (2020) suggested that this correlation was small 
(0.22), indicating that the two coefficients are measuring 

different population statistics. The correlation between Fbal 
and Ahc was positive and strong, as well as those between 
both of them and CE. FpedRDrop coefficient was negatively 
correlated with FpedI.

Correlations between inbreeding coefficients vary be-
tween studies. Both, population structure and introgression 
seem important factors affecting this variability found in the 
literature (e.g. Schäler et al., 2020). It seems that commer-
cial lines present a high and positive correlation for FpedAll 

F I G U R E  1  Heat map of Pearson's correlation coefficients among the different inbreeding coefficients. Above the diagonal: blue indicates 
strong positive correlation, white illustrates no correlation and red denotes strong negative correlation. Below the diagonal: correlation values. 
FpedA: Ancient pedigree-based inbreeding coefficient; FpedI: Intermediate pedigree-based inbreeding coefficient; FpedR: Recent pedigree-
based inbreeding coefficient; FpedAll: Pedigree-based inbreeding coefficient from all the genealogy; Fbal: Pedigree-based inbreeding coefficient 
from Ballou (1997); Fkal: Pedigree-based inbreeding coefficient from Kalinowski et al. (2000); FpedRDrop: recent pedigree-based inbreeding 
coefficient calculated from gene drop; Ahc: Ancestral history coefficient; FrohA: Ancient ROH-based inbreeding coefficient; FrohI: Intermediate 
ROH-based inbreeding coefficient; FrohR: Recent ROH-based inbreeding coefficient; Fvan: Inbreeding coefficient from VanRaden (2008); Fsnp: 
Proportion of homozygous SNP; PHoMA: Proportion of homozygous SNP for the minor allele; CE: compression efficiency
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and Fkal (0.90 in the present study), whereas lines with in-
trogression or local lines show a small correlation between 
FpedAll and Fkal. In addition, the correlation between 
FpedAll and Fbal is higher within local or introgressed lines 
(Schäler et al., 2020). However, further research on correla-
tions is needed to validate such statements.

In addition, the inbreeding coefficient FrohA was nega-
tively correlated with FrohR and CE. FrohR was the central 
coefficient having 9 edges that link it to different inbreeding 
coefficients and, as expected, it is negatively correlated with 
FrohA. FpedI was negatively correlated with FpedRDrop and 
Fkal.

F I G U R E  2  Network of Pearson's correlation coefficients for different inbreeding estimates. Blue edges show the positive correlations and 
red edges the negative ones. FpedA: Ancient pedigree-based inbreeding coefficient; FpedI: Intermediate pedigree-based inbreeding coefficient; 
FpedR: Recent pedigree-based inbreeding coefficient; FpedAll: Pedigree-based inbreeding coefficient from all the genealogy; Fbal: Pedigree-
based inbreeding coefficient from Ballou (1997); Fkal: Pedigree-based inbreeding coefficient from Kalinowski et al. (2000); FpedRDrop: recent 
pedigree-based inbreeding coefficient calculated from gene drop; Ahc: Ancestral history coefficient; FrohA: Ancient ROH-based inbreeding 
coefficient; FrohI: Intermediate ROH-based inbreeding coefficient; FrohR: Recent ROH-based inbreeding coefficient; Fvan: Inbreeding coefficient 
from VanRaden (2008); Fsnp: Proportion of homozygous SNP; PHoMA: Proportion of homozygous SNP for the minor allele; CE: compression 
efficiency
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The PCIT approach allows inferring meaningful associ-
ations between inbreeding coefficients and emphasizes the 
importance of FrohR from other coefficients. In order to limit 
the increase in inbreeding in a population under selection or 
not, it could be recommended to monitor this coefficient, but 
a good proxy of it could be those pedigree-based definitions 
reflecting recent inbreeding (FpedR and FpedRDrop).
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