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Abstract
Purpose The environmental impacts (EIs) of the global pig production sector are expected to increase with increasing global pork
demand. Although the pig breeding industry has made significant progress over the last decades in reducing its EI, previous work
has been unable to differentiate between the improvements made through management improvements from those caused by
genetic change. Our study investigates the effect of altering genetic components of individual traits on the EI of pig systems.
Methods An LCAmodel, with a functional unit of 1 kg live weight pig, was built simulating an intensive pig production system;
inputs of feed and outputs of manure were adjusted according to genetic performance traits. Feed intake was simulated with an
animal energy requirement model. A correlation matrix of the genetic variance and correlations of traits was pooled from data on
commercial pig populations in the literature. Three sensitivity analyses were applied: one-at-a-time sensitivity analysis (OAT)
used the genetic standard deviations, clusters-of-traits sensitivity analysis (COT) used the genetic standard deviations and
clustering based on correlations, and the sensitivity index (SI) applied the full correlation matrix. Five EI categories were
considered: global warming potential, terrestrial acidification potential, freshwater eutrophication potential, land use, and fossil
resource scarcity.
Results and discussion The different EI categories showed similar behaviour for each trait in the sensitivity analyses. OAT
showed up to 18% change in EI relative to baseline for energy maintenance and around 3% change in EI relative to baseline
for most other traits. COT grouped traits into a grower/finisher cluster (up to 17% change relative to baseline), a reproductive
cluster (up to 7% change relative to baseline), and a sow robustness cluster (up to 2% change relative to baseline), all clusters
including negative correlations between traits. By including genetic correlations, the SI went from being influenced by mainte-
nance, and finisher and gilt growth rate into solely being dominated by maintenancen and protein-to-lipid ratio responsible for
above 0.8 and 0.35 of the variance in EI respectively.
Conclusions We developed a novel methodology for evaluating EIs of changes in correlated genetic traits in pigs. We found it
was essential to include correlations in the sensitivity analysis, since the local and global sensitivity analyses were not affected to
the same extend by the same traits. Further, we found that finisher growth rate, body protein-to-lipid ratio, and energy mainte-
nance could be important in reducing EI, but mortalities and sow robustness had little effect.
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1 Introduction

Pork is one of the most consumed meat products worldwide
(FAOSTAT 2018) and the demand for pig meat is expected to
increase with the growth in global population and economy
(FAO 2017). At the same time, there is growing consensus
that the current environmental impacts of livestock systems,
including pig systems, are unsustainable (Springmann et al.
2018). Considerable evidence has also been presented that
through changes to production systems, these impacts can be
reduced (Herrero et al. 2016; Poore and Nemecek 2018).Most
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environmental impacts from pig production come from feed
production, but manure management also makes major con-
tributions (McAuliffe et al. 2016; Monteiro et al. 2016).
Therefore, changes in pig performance traits that affect inputs
or outputs of a pig production system can have a substantial
influence on the environmental impact of their production
systems.

Sixty percent of the global pork production is produced in
intensive indoor farming systems (MacLeod et al. 2013). In
most commercial settings, farms continuously receive im-
proved genetics from pig breeding companies, either as semen
or new breeding stock (Knox 2016). Current pig performance
has resulted from large changes in the main traits during the
last decades, due to intensive selective pressure (Tribout et al.
2010). Previous life cycle assessment (LCA) studies investi-
gating the environmental impacts of pig and other meat pro-
duction systems over time have suggested big reductions in
impact per kilogram of output produced (Capper et al. 2009;
Cederberg et al. 2009; Verge et al. 2009; Capper 2011;
Pelletier et al. 2014; Pelletier 2018). However, in all these
studies, efficiency improvements across the production sys-
tem are included in the emission reductions, and it is therefore
not possible to differentiate between improvements from
changes in genetic selection, improved management and feed-
ing, or upstream efficiency improvements in feed and fertilizer
production, transport, and energy generation. Here, we present
a method for estimating the environmental effects of breeding
by accounting for changes in genetic traits in pigs.

In animal breeding, only the phenotype of an individual
animal can be directly measured. However, the effect of an
individual trait can be estimated on a population level, since
different traits will lead to different performance of different
animals. Under the assumption of a constant environment and
no environment-gene covariance, the effect of the genetic dif-
ference in individual traits can be estimated mathematically in
a given population, and the effect of the specific genetic com-
bination can be estimated at animal level (Oldenbroek and van
der Waaij 2014). In this paper, the term genetic traits (GTs)
will be used to describe the phenotypical effect of the genetic
difference in individual traits in a given animal.

It is often problematic to include correlations between input
variables in LCA modelling (Wei et al. 2015) and it is there-
fore common for studies to ignore correlations, notwithstand-
ing their potentially significant influence on model results.
However, the risk of under or overestimating the variance
and sensitivity of the system, by ignoring correlations in
LCA modelling, can be substantial (Groen and Heijungs
2017). The model presented in this paper used GTs in pigs
as independent input variables. Since it is well known that the
genetic component of some traits are strongly correlated (e.g.
feed efficiency which is both dependent on the diet and about
a dozen metabolic and growth traits (Reckmann and Krieter
2015)), it was unreasonable to assume that GTs in pigs are

uncorrelated. In this paper, we developed an LCA model that
implements correlations between GTs when quantifying the
environmental impacts of pig systems.

The aim of the study was to develop a methodology that
could (1) evaluate the environmental impacts of each GT in
pigs, (2) fully implement the available data on correlations
between the genetic components of traits in the present pig
populations, and (3) investigate the effect of including corre-
lations on the outputs of an animal LCAmodel. To fulfil these
objectives, we constructed a cradle to farm-gate LCA model
of a pig farming system, which takes the most common un-
ambiguous GTs for pigs as independent variables. A correla-
tion matrix was compiled from literature, and the sensitivity of
the LCA to each GTwas tested with local and global sensitiv-
ity analyses. We hypothesise that not all GTs included in com-
mon pig breeding objectives are able to reduce the environ-
mental impacts of pig systems to the same extend. Although
the model was developed for and applied to pigs, it is expected
that the methodology could be applied to other livestock sys-
tems to explore similar questions.

2 Materials and method

2.1 Goal and scope

The goal of this study was to investigate how GTs in pigs can
be included in a livestock LCA framework. Further, we
wanted to explore which GTs influenced the environmental
impacts of the system and how their interactions could affect
future breeding goals in pigs. The study boundaries were cra-
dle to farm gate and the functional unit was 1 kg of live animal
at the farm gate (FAO 2016). The functional unit was chosen
to avoid uncertain assumptions on the killing out percentage
and the meat quality which are certainly affected by traits but
are difficult to estimate from animal modelling. The model
used attributional LCA (BSI 2011) and distributed impacts
among coproducts by economic allocation (Mackenzie et al.
2017).

All EI categories from the ReCiPe 2016 midpoint method
(Huijbregts et al. 2016) were considered in this study. To align
with FAO (2018), all impact categories with sufficient avail-
able data were calculated and the most important impacts are
reported and discussed in this paper: global warming potential
(GWP), terrestrial acidification potential (TAP), freshwater
eutrophication potential (FEP), land use (LU), and fossil re-
source scarcity (FRS).1 Available impact categories that are
not commonly reported in animal LCA studies are reported in
the Electronic Supplementary Material - ESM, section 8.13:
Stratospheric Ozone Depletion, Ionizing Radiation and

1 This impact category incorporates fossil energy use in its characterization as
referenced in Table 2 of the LEAP guidelines for pig systems (FAO 2018)
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Mineral Resource Scarcity. Due to data unavailability, ozone
formation, fine particulate matter, toxicity, and water con-
sumption impacts were not calculated.

2.2 Choice of system

An intensive indoor pig production system was chosen since
most of the pigs produced in Europe are raised as such (Driver
2017). The Danish pig production industry has published
abundant information which, together with the influential
Danish contribution to the European pig semen and pork mar-
ket, gave an opportunity for detailed modelling of a highly
defined, representative system that is recognized as an inter-
national benchmark. To evaluate a more holistic perspective
of the influence of GTs on the full life cycle of the pig, an
integrated pig production system, which contains both pig
breeding and a production unit, was chosen. In this paper,
the Baseline System will be used for the unmodified system
where all variables have their mean value, and the Baseline
System is therefore deterministic.

2.3 The system

The model covered 3 stages in the life of the animals: (1) gilt:
female pigs from weaning until the point of mating, where the
gilts were fed together with the production pigs until day 56
and thereafter fed a specialist gilt diet; (2) sow: female pigs
from first insemination until culling including piglets until
weaning; this stage includes gestation, lactation, wean to
oestrus, and failed pregnancies; (3) production pig: growing
and finishing of pigs from weaning to slaughter weight at
farm-gate (see Fig. 1). The terms gilt, sow, and production
pig will be used in the following text to refer to these three
stages. Male reproducing pigs were not included in the model
since preliminary calculations estimated that thousands of off-
spring may result from a single boar (> 3000 and > 95,000 for
natural and artificial insemination, respectively) and their in-
fluence on the slaughtered pigs could, therefore, be expected
to be minimal. Time spent in each stage, diet composition, and
feed amount for the Baseline System can be found in the
ESM, section 8.1–8.3.

The LCA model was constructed to simulate the integrated
Danish intensive indoor pig system based on the method de-
scribed by Mackenzie et al. (2015) (see Fig. 1). The structure
of the systemwas based on recommendations for pig manage-
ment published on the home page of the national Danish Pig
Board (SEGES 2018). A sow compartment, containing the
first two life stages, following the sow from birth to 8th parity,
was constructed, with feed, manure, and litter sizes adjusted
according to age and surviving proportion of sows (calculated
from phase specific mortality rates) (see section 8.1–8.3). A
production pig compartment, equivalent to the third life stage,
followed the pig from birth to slaughter at 110 kg, with feed

intake and output of live pig adjusted for mortality rates. A
single feed was chosen from weaning to slaughter for the
production pigs since phase feeding is not commonly applied
in Denmark (Sloth 2000) and trials on phase feeding have
previously shown reduced leanness in Danish trials (SEGES
2013a). Diet was composed of typical commercial feed ingre-
dients, with 6 different feeds (creep feed, production pig feed,
gilt feed, early gestation feed, late gestation feed, lactation
feed) offered to the sow and 2 different feeds (creep feed,
production pig feed) offered to the growing pigs, according
to published information and the recommendations for the
Danish pig industry. The composition of all feeds can be seen
in the ESM, section 8.1. Emissions from feed ingredients and
power consumption on farm were taken from inventories for
Denmark or similar countries from the SimaPro 8.5.2.0 data-
base (Pre Consultants 2017). Manure chemical composition
was calculated based on the mass balance principle, and emis-
sions from the pig unit and manure management were calcu-
lated based on (IPCC 2006) for GWP and (Guinee 2002) for
other chemicals.

2.4 Pig traits considered in the LCA model and their
origin

To account for the performance of different pig genotypes, a
number of trait variances were included for in the modelling
process to supplement the baseline model (see Table 1). In the
Baseline System, all traits had their average value. When cal-
culating the outcomes of the model and the sensitivity analy-
ses, a selected number of standard deviations (SD) were added
to the average value (see section 2.9 for details). Included
traits were chosen to account for different parts of the energy
dynamics and consumption of the pig, and to account for
changes in inputs or outputs of the model. Traits with very
small genetic variance relative to the Baseline System (such as
gestation length-variance around 1 day) and traits which no
genetic variance reported in literature (such as digestive effi-
ciency) were not included in the analyses. The genetic vari-
ance and covariance were taken from different sources in the
literature and the pooling method can be seen in detail in 2.9
and in the ESM, section 8.12. Average daily gain from birth to
30 kg (ADG30) and average daily gain from 30 to 100 kg
(ADG100) were treated as two different traits, since the breed-
ing literature often reports them separately, even though they
are not independent. ADG100was taken from literature which
reported growth rate from approximately 30 kg until normal
slaughter weight at around 100 kg. Due to the many different
end weights for the late growth rate and for simplicity reasons,
a single number, 100, was chosen to specify the traits which
covered rearing to finishing weight. Sow age at sexual matu-
rity (AgeMature) and sow body weight at sexual maturity
(BWMature) were both taken from literature reporting days
to or body weight at sexual maturity respectively at first
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insemination. Body protein-to-lipid ratio (ProtLip) was ap-
proximated based on the variance in reported lean meat, and
calculated from protein concentration in the empty body and
organs reported by Szabó et al. (2001) (see ESM, section 8.5).
Average number of piglets per litter (LitterSize) was treated as
a single trait, even though there are clear differences in sow
performance during different parities, but data on correlations

for a trait for each parity was not available. The model incor-
porated post weaning mortality (PostWMort) with a different
variance for rearing and finishing pigs, but since correlations
were only available for a single post weaning mortality trait,
they always had the same number of SD added to the average
trai t value. Daily metabolic energy maintenance
(Maintenance) was based on reported residual feed intake

Table 1 Abbreviations and description of the pig performance traits
considered; the standard deviation (SD) and the relevant units are also
given. PostWMort was considered a single trait with two different

variances. All input values and trait calculations in the model can be
found in the supplementary materials section 8.1–8.8

Abbreviation Trait Mean Source Standard
deviation

ADG100 Average daily gain from 30 kg to 100 kg 0.879 kg/day (SEGES 2012) 0.052 kg/day

ADG30 Average daily gain from birth to 30 kg 0.461 kg/day (SEGES 2012) 0.015 kg/day

AgeMature Sow age at sexual maturity 215 days (Miller et al. 2011) 25.3 days

AMPar Average maximum sow parity 4.32 parities (SEGES, n.d.) 0.74 parity

BWLossLactation Sow body weight loss during lactation Reproductive cycle gains and
losses = 20 kg

(SEGES 2013b) 6.160 kg

BWMature Sow bodyweight at sexual maturity 148 kg (Miller et al. 2011) 17.717 kg

LactationFeed Sow feed intake during lactation stage 170–208 kg (Sørensen 2005) 7.789 kg

LitterSize Average number of live born piglets per litter 14.2–16.2 depending on parity (SEGES, n.d.) 0.81 piglet/litter

Maintenance Daily metabolic energy maintenance, “a” in the
equation E = a ∗ BWb

0.44 MJ/kg0.75 (Dourmad et al. 2008) 0.073 MJ/kg0.75

PostWMort Mortality of pigs alive at weaning until slaughter
weight

(SEGES, personal
communication)Rearing: 3.1% 3.2% points

Finisher: 3.3% 3.4% points

PreWMort Mortality for live born piglets until weaning 12% (SEGES, n.d.) 7.5% points

ProtLip Protein to lipid ratio in the body of the animal 0.50 at maturity Result of diet 0.0087

Fig. 1 Schematic model of the pig production system considered. The
reproductive system, consisting of the gilt and the sow, produces piglets
for each parity. These piglets are used to grow replacement gilts and

slaughter pugs. Manure is managed on farm and spread on fields where
it replaces artificial fertilizers
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from rearing to slaughter weight and the equivalent energy
was scaled to metabolic body weight to fit the rest of the life
cycle of the animal (see ESM, section 8.5). Sow average max-
imum parity (AMPar) was chosen to represent the robustness
of the sow, since it has been reported at a much higher fre-
quency and was easier to model than lifetime or fitness of the
sow.

2.5 Energy balance model

The pig model specified inputs and outputs as functions of
GT, and feed intakewas based on energy demand from growth
and maintenance. Feed intake was calculated from the re-
quired energy for each day based on (Wellock et al. 2003;
Dourmad et al. 2008; Tallentire et al. 2016) with daily energy
intake calculated as

E f � Rd ¼ Em þ Eg ð1Þ

where Ef is the metabolizable energy in the feed eaten each
day, Rd is the energy use efficiency which relates apparent
energy use to available energy, Em is the energy needed for
maintenance of the body, and Eg is the energy needed for
growth. By dividing Eq. (1) with Rd and expanding the right
side of the equation, we get:

E f ¼ 1

Rd
� a� BWb þ

ΔProt� 23:8MJ
�
kg

0:6
þ

ΔLip� 39:6MJ
�
kg

0:8

 ! !

ð2Þ

where a is the linear metabolic constant corresponding
to Maintenances, BW is the body weight at the start of
the day, b is the metabolic maintenance exponent,
ΔProt is the growth of protein, and ΔLip is the growth
of lipid. Rd was estimated for each feed with the “feed
mix nutritional calculator” tool published by SEGES
(2017) and the values of a and b were taken from van
Milgen et al. (2008). It was chosen to model the Em

based on the metabolic body mass over the protein
mass since previous published and grey literature report-
ed the body mass of the pig much more frequent than
the protein. ΔProt was estimated from nitrogen content
in pigs slaughtered at different ages and transformed to
crude protein by multiplying with 6.25. ΔLip was esti-
mated by dividing ΔProt with ProtLip, which was based
on energy conservation in a simplified version of
Wellock et al. (2004) updated to present pig perfor-
mance. The Em was calculated for each day in the gilt
and production pig stages with fast growth, accounting
for the daily BW by assuming linear growth within a
stage, and calculated for the average weight multiplied
by the number of days for the sow stage with slower
g r ow t h ( s e e ESM, s e c t i o n 8 . 11 f o r e n e r g y

implementation of traits). The LCA model was adapted
on matrix form according to Heijungs and Suh (2002)
(see Fig. 2):

B� A−1 � f ¼ g ð3Þ
where B is the environmental matrix, containing impacts
for each process, A is the technology matrix, containing
the flow of resources inside the model, f is the func-
tional unit, and g is the result matrix. The model was
built in MATLAB R2017a (MathWorks 2017) with the
B matrix imported from single inventories from
SimaPro 8.5.2.0 (Pre Consultants 2017). A more thor-
ough description of the matrix adaptation can be found
in the ESM, section 8.9.

2.6 Used data and compilation of correlation matrix

Genetic variance and significant genetic correlations for
pig traits were collected from 22 recently published arti-
cles on genetic variance and correlations in pigs (see
ESM, section 8.12). The selected studies contained genet-
ic correlations, additive genetic variance, and/or data
which made it possible to calculate either of these under
the assumption of additive genetic effects. Only studies
conducted on common and commercially available mod-
ern fast-growing pig breeds raised indoor in Europe,
North America, or Australia were included. Studies that
did not list the number of pigs sampled were excluded. If
a study investigated multiple breeds, each breed was in-
cluded in the sample. If a study presented multiple results
from different models, only results from the model the
study recommended was included in the sample.

Trait correlations with measured or obvious high correla-
tions were merged. Average daily feed intake was in this way
replaced with ADG100, age at first farrowing was replaced
with AgeMature, feed conversion ratio was replaced with
residual feed intake (later transformed into Maintenance,
see ESM, section 8.5), litter size and total litter weight for
any parity number were replaced with LitterSize, and sow
life time and sow lifetime piglets produced were replaced
with AMPar. The correlation matrix was pooled with univar-
iate weighting applying Fisher’s z transformation to reduce
bias with different sample sizes and correlations (Furlow and
Beretvas 2005). The variance was pooled from the studies
weighted with sample size applying Bessel’s correction
(Upton and Cook 2014). If there was no known genetic
correlation between any two traits, zero correlation was as-
sumed. Since the pooled correlation matrix was not positive
semidefinite, a small correction to the matrix was implement-
ed to the nearest semidefinite matrix (Higham 2002). It was
assumed that all GTs were normally distributed.
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2.7 Uncertainty and sensitivity

To test the range of outputs from the model and to evaluate
the effect of every included trait in the model, a number of
uncertainty and sensitivity analyses were performed. This
article follows the proposed definition by Saltelli et al.
(2008), where the term uncertainty analysis (UA) comprises
estimation of the variance of the model outcome and sensi-
tivity analysis (SA) refers to estimation of relative contribu-
tions of individual variables to the overall variance.

2.7.1 Sampling size for model outcomes uncertainty

To take the genetic correlations between the traits into account
when computing the average impact for the functional unit,
and to estimate the uncertainty, the model was run multiple
times with Latin hypercube sampling, and the mean and the
variance were computed; this technique has been shown to
converge with fewer samples than Monte-Carlo sampling
(Groen et al. 2014). The optimal sample size was tested by
the mean of the variance and the variance of the mean of 50
groups of samples. Increasing sample size was deemed unnec-
essary when the changes to the mean and variance became
negligible with higher sample size (Ritter et al. 2011). The
model was regarded as stable when the mean of the variance
did not increase with increased sample size and the variance of
the means was below 1% of the mean.

2.7.2 Sensitivity analysis

The sensitivity of different GTs for environmental impacts
was tested using multiple methodologies for sensitivity

analysis, as described below in brief. A more mathematical
description can be found in the ESM, section 8.10. The meth-
odologies accounted for genetic correlations between traits to
a different extent.

2.7.3 One-at-a-time sensitivity analysis

A traditional way to estimate the sensitivity of the variables is
to conduct a one-at-a-time sensitivity analysis (OAT) to test
local sensitivity. The genetic variance found in the correlation
matrix in section 2.8 was used to compute the standard devi-
ation for each trait. Each trait (see Table 1) was changed by ± 2
SD and the percent change from Baseline System value of
each impact category was recorded.

2.7.4 Cluster of traits sensitivity analysis

Following the recommendations ofWei et al. (2015) to test the
influence of interactions among GTs, a global sensitivity anal-
ysis was performed by first grouping the traits into clusters,
followed by varying the clusters one at a time. This test is
termed clusters of traits sensitivity analysis (COT) in the fol-
lowing text. To ensure that the traits which were most closely
related to each other were grouped together, we constructed
the clusters from the correlation matrix of the traits (see sec-
tion 2.8). Here, the relation between the traits was based on the
genetic correlation and the Euclidean distance was computed
with the cosine relation, where a shorter distance reflects a
higher similarity. Since negative genetic correlations between
traits affect the outcome of the breeding strategy just as much
as positive correlations, and the output of the cosine relation
gets larger with larger negative numbers, the absolute

Fig. 2 Principal diagram of an LCAmodel onmatrix form. The letters (B,
A, f, g) refer to the parts of the matrix LCA model of Eq. 3 in the text,
where the inputs from the environmental matrix, B, and the technology
matrix,A, are multiplied by the functional unit, f, to produce the result, g.
Both empirical measurements and theoretical equations are used to fill out
theB andAmatrixes. Outside the bounds of the LCAmodel, the different

elements in global sensitivity analysis and possible methods for sampling
and scenarios are given. Solid grey lines illustrate methods used, dotted
grey lines illustrate methods considered but not applied. The sampling
process interacts with the outcome of the model to produce a result of the
sensitivity analysis
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correlation was used in this calculation. An upwards hierar-
chical clustering method was implemented in SAS 9.4 soft-
ware (SAS Institute Inc. 2012) and the optimal number of
clusters was chosen based on the pseudo t-squared index.
For each cluster with more than one trait, all traits were varied
by 0.2 intervals to ± 2 SD according to the direction of internal
correlations. Each cluster was varied independent of the other
clusters.

2.7.5 Total, uncorrelated, and correlated sensitivity index

To estimate the influence of the genetic correlation between all
the traits at once, a second global sensitivity analysis was
performed by calculating the total, uncorrelated, and correlat-
ed sensitivity index (total SI, uncorrelated SI and correlated SI
respectively) (Xu and Gertner 2008; Groen and Heijungs
2017), sampled with correlated Latin hypercube sampling.
This technique estimates the fraction of the total model vari-
ance which can be associated with the variance in each indi-
vidual trait (total SI), the fraction of the model variance which
can be associated with the trait itself without interactions with
other traits (uncorrelated SI), and the fraction of the model
variance which can be associated with the interaction of the
trait with other traits (correlated SI). This was done by first
estimating the total SI and the uncorrelated SI, followed by
estimation of the correlated SI by subtracting uncorrelated SI
from total SI. The total SI will therefore be the sum of the
correlated and uncorrelated SI; total and uncorrelated SI have
values between zero and one, but correlated SI can range
between plus one and minus one, since it accounts for the
difference between the total and the uncorrelated sensitivity.

The sample size for the TSI, UCSI, and CSI was investigated
with themean of the variance and the variance of themean of 20
groups ofmeans and variances each based on 20 results from the
investigated sample size. Results were calculated for sample
sizes of 25 to 212, and the optimal sample size was predicted
with regression for higher number of samples. The sample size
was chosen when the changes to the mean of the variance were
negligible with higher sample size (Ritter et al. 2011).

The results are presented in the order of increasing com-
plexity: the model outcomes are presented first followed by
the results of the local sensitivity analysis and thirdly, the
outcome of the two global sensitivity analyses are presented.

3 Results

3.1 Outcomes of the LCA model

The outcomes of the LCA model are reported in Table 2 with
100 correlated samples produced with Latin hypercube sam-
pling. The mean of variance of the model outcome reached a
constant value, and the variance of the mean was < 0.01%, <

0.0001%, < 10−6%, < 0.01%, and < 0.0001% for GWP, TAP,
FEP, LU, and FRS, respectively, after 30 samples from corre-
lated Latin hypercube sampling.

The production pig component contributed the majority of
the environmental impacts, followed by the sow and the gilt
system. TAP and FRS were more dominated by the sow com-
ponent than the other impacts and LU had the highest contri-
butions from the production pig system.

3.2 One-at-a-time sensitivity analysis

The results of the OATare shown in Fig. 3. All environmental
impacts were sensitive to maintenance (12.8%, 18.8%, 11.5%,
12.6% and 9.6%/− 12.5%, − 18.4%, − 11.2%, − 12.4%, and −
9.2% for GWP, TAP, FEP, LU, and FRS in + 2SD/− 2SD
direction, respectively) with ADG100 being the second most
influential trait for most EI in the − 2 SD change (2.9%, 3.6%,
3.2% 2.9%, and 2.8% for GWP, TAP, FEP, LU, and FRS
respec t ive ly in – 2 SD di rec t ion) ; BWMature ,
BWLossLactation, LitterSize, ProtLip, and AMPar had some
influence (around ± 2%), whereas ADG30, AgeMature,
LactationFeed, PreWMort, and PostWMort had minimal in-
fluence on the model outcome (< ± 1%). ADG100, ADG30,
BWlossLactation, ProtLip, and LitterSize reduced impacts
when they were increased, whereas BWmaturity,
Maintenance, and AMPar increased impacts when they were
increased. TAP was the most sensitive environmental impact
to trait variation; GWP, FEP, LU, and FRS had similar sensi-
tivity to variation of traits among the EI for most traits.

3.3 Correlated cluster sensitivity analysis

The clustering produced five clusters with three clusters con-
taining more than one trait. The multi-trait clusters can be seen
in Table 3. Here, most traits had positive genetic correlations
with other traits within the cluster, with the exception of
ProtLip (cluster 1), LactationFeed (cluster 2), and AMPar
(cluster 3) which had negative genetic correlations with the
other traits inside their cluster. Cluster 1 contained traits asso-
ciated with growth, cluster 2 contained traits associated with
gestation and lactation, and cluster 3 contained traits associat-
ed with sow development and robustness.

The results of the COT can be seen in Fig. 4. The figure
shows that when all traits in a cluster were changed by ± 2 SD,
cluster 1 resulted in the highest change in environmental im-
pacts, cluster 2 had an intermediate effect, and cluster 3 result-
ed in nearly no change in environmental impacts compared
with the Baseline System. For clusters 1 and 2, it is clear that
TAP was the most sensitive environmental impact to changes
in all clusters. When all traits in cluster 1 were reduced by 2
SD according to their correlations (left side of Fig. 4), all
environmental impacts were reduced. By reducing the cluster
1 traits in Fig. 4 by 2 SD according to their internal
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correlations, the TAP was reduced around 17% and other im-
pacts were reduced around 10% relative to the Baseline
System. Cluster 2 had reduced environmental impacts when
all traits in the cluster were increased according to their inter-
nal correlations (right side of Fig. 4). By increasing cluster 2
traits in Fig. 4 by 2 SD according to their internal correlations,
the TAP was reduced around 6% and other impacts were re-
duced around 4% compared with the Baseline System. Cluster
3 resulted in almost no change in EIs when the traits were
changed, but had slightly reduced EIs when the traits in the
cluster were increased according to their internal correlations
(right side of Fig. 4). The EIs was slightly reduced by around
2% when the cluster 3 traits were increased by two SD.

3.4 Sensitivity indices

The total SI, uncorrelated SI, and correlated SI, produced
with 20,000 samples, can be seen in Fig. 5. All EI catego-
ries showed similar SI for most traits, although TAP and LU
showed slightly higher SI in dominant traits and FRS
showed slightly lower SI than GWP and FEP for dominant
traits. ProtLip (0.39, 0.42, 0.40, 0.44, and 0.33 total SI for
GWP, TAP, FEP, LU, and FRS, respectively) and
Maintenance (0.83, 0.88, 0.84, 0.87, and 0.74 total SI for
GWP, TAP, FEP, LU, and FRS, respectively) were the traits
with the highest total SI in all EIs, and were thereby respon-
sible for most of the variance in the model outcome.
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Fig. 3 The percent change to the
environmental impacts compared
with the Baseline System of
global warming potential (GWP),
terrestrial acidification potential
(TAP), freshwater eutrophication
potential (FEP), land use (LU),
and fossil resource scarcity (FRS)
when each genetic trait is varied
by + 2 (top) or − 2 (bottom) SD
one at a time. All trait abbrevia-
tions can be found in Table 1

Table 2 The mean outcome of the model with pig genetic traits
sampled 100 times with correlated Latin hypercube sampling and
relative contribution to the environmental impacts for the three
considered pig life stages: gilt (birth to first heat), sow (first heat up to
8th parity, including piglets until weaning), and production pig (pig for
slaughter from weaning until slaughter weight). Impacts categories are

global warming potential (GWP), terrestrial acidification potential (TAP),
freshwater eutrophication potential (FEP), land use (LU), and fossil
resource scarcity (FRS). Results are for 1-kg live pig at farm gate.
Standard deviations for the stochastic model are reported in parenthesises
for absolute outcomes. Partial contributions are percent of Baseline
Model result

Impact categories

GWP TAP FEP LU FRS

Model outcomes 4.18 (0.28) kg
CO2 eq

40.9 × 10−3 (4.00 × 10−3) kg
SO2 eq

552 × 10−6 (33.4 × 10−6)
kg P eq

4.12 (0.27) m2

land use
0.202 (0.010) kg

oil eq

Partial contribution of Baseline
System:
Gilt 2.4% 2.0% 2.6% 2.7% 3.1%

Sow 18.7% 22.9% 17.8% 11.1% 26.1%

Production pig 78.8% 75.1% 79.6% 86.2% 70.8%
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BWMaturity, BWLossLactation, and LitterSize had a total
SI of a few hundredths. The correlated SI contributed about
half of the total SI for Maintenance and almost all of the
total SI for ProtLip, so interactions for these traits with
other traits were very important for explaining the variance
in the model. BWLossLactation and LitterSize had nearly
all their total SI from the correlated SI, and ADG100 had
slightly negative correlated SI. Maintenance was the only
trait with a major uncorrelated SI although ADG100 and
BWMaturity also had minor contributions from the uncor-
related SI.

4 Discussion

The model presented in this paper illustrates the capabilities
of a comprehensive method for predicting the influence of
GTs on the environmental impacts of pig systems. This has
been achieved by creating an LCA, which incorporates an
animal energy model that can account for genetic changes
to specific traits. By pooling genetic variance and correla-
tion of traits from the global pig population, we demonstrat-
ed the potential influence of different traits on the environ-
mental impacts. Further, by taking the genetic correlations
between the traits into account to different degrees using a
range of sensitivity analysis techniques, we illustrated the
importance of considering genetic correlations among traits
in pigs, when devising future strategies to reduce environ-
mental impacts through breeding. The following sections
discuss the outcome of the LCA model and sensitivity anal-
ysis, the methodological challenges faced by and arising
from this work, and finally its implications for sensitivity
analysis in LCA models.

4.1 Outcomes of the LCA model

The environmental impacts from the baseline model in this
study are consistent with literature values (Halberg et al.
2010; Nguyen et al. 2011). The result of this model is present-
ed as a mean and standard deviation of 100 correlated sample

runs and the SI was calculated based on 20,000 samples. As
we have illustrated with the mean of variance and variance of
mean, the correct sample size was essential to achieve accurate
results without wasting excessive resources (Baldini et al.
2017; Mendoza Beltran et al. 2018). It was confirmed that
the majority of all impacts comes from the production pig
system, so pig LCA models only focusing on wean to slaugh-
ter is a reasonable approximation for the system boundary
(Monteiro et al. 2016), but this assumption could underesti-
mate some impact categories for the full production system
with up to 29%.

Table 3 Resulting clusters of traits from the upwards hierarchical
clustering based on the genetic correlations; only clusters with more
than one trait shown. Positive and negative sign indicates the direction
of correlation and negative marked traits are changed opposite of traits
marked positively within the same cluster

Cluster 1: growth and
energy

Cluster 2:
reproduction

Cluster 3: sow
performance

+ ADG100 + BWLossLactation + AgeMature

+ ADG30 −LactationFeed − AMPar

− ProtLip + LitterSize

+ Maintenance + PreWMort

Fig. 4 Percentage change in environmental impacts when clusters of
genetic traits were varied to ± 2 SD. a Growth and energy trait cluster
composed of ADG100, ADG30, ProtLip, and Maintenance; b
reproduction trai t cluster composed of BWLossLactation,
LactationFeed, LitterSize, and PreWMort; c sow performance trait
cluster composed of AgeMature and AMPar. All trait abbreviations can
be found in Table 1
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4.2 Model sensitivity analysis

The contrasting results of the different sensitivity analyses
demonstrated the importance of the methodological ap-
proach when drawing conclusions regarding the potential
of GTs to reduce environmental impacts. The results of the
OAT sensitivity analysis showed the importance of
Maintenance, ADG100, and some sow performance traits
(see Fig. 3), whereas Maintenance and ProtLip were
highlighted by the SI methodology (see Fig. 5) as good
options to reduce environmental impacts. Both outcomes
align with the focus of the breeding industry on growth rate
and feed efficiency (PIC 2017; DANBRED 2018).
However, when evaluating the potential of current breeding
strategies to reduce the environmental impacts of pig pro-
duction systems, it is critical to know which traits are im-
proved when selecting for feed efficiency. This is important
because some traits may have biological limits, for example
lipid content in the body cannot go below a theoretical zero,
and this needs to be recognized if such limits are being
approached (Tallentire et al. 2018).

The OAT results did not suggest any environmental bene-
fits from improving sow longevity and reducing pig mortality,
since the OAT showed little sensitivity to changes in these
traits, while AMPar actually increased environmental impacts
when increased. The low sensitivity of environmental impacts
to LitterSize and AMPar could be due to the high influence of
management for outcomes in this phase of the production
system, such as the choice of when to cull a sow (Nagyné-
Kiszlinger et al. 2013; Thekkoot et al. 2016). Further, only
traits which affect major inputs and outputs of the LCAmodel,
i.e. feed inputs, live weight pigs produced, and manure from
pig systems (Mackenzie et al. 2015; McAuliffe et al. 2016),
will have a major influence on the environmental impacts.
Maintenance and ProtLip could therefore be expected to be
influential since they affect feed intake for both the gilt, the
sow, and the production pig. Traits like LitterSize and AMPar
only directly influence the breeding phase of the production
cycle for pigs when considered in an LCAmodel. Increases in
AMPar increased environmental impacts because the higher
BW as the sow increases in age requires higher feed intake
without equivalent associated benefits in increased outputs,
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correlated sensitivity index for
genetic traits based on 20,000
samples for global warming
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potential, freshwater
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comparable with the percent
change on the previous figures,
but tendencies can still be read
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though this effect is small compared with other traits. Piglet
mortality only has minor influence on the environmental im-
pacts, since the invested feed to produce them is small com-
pared with the full grown production pig. In a similar way,
traits which only affects a short period in the life cycle (such as
AgeMature and ADG30) or traits with only a small variance
compared with the mean value (such as LactationFeed) can be
expected to only have minor contribution to the outcome of
the model.

Considering the genetic correlations in relation to the COT
sensitivity analysis (Fig. 4), some classic breeding objectives
may not be as effective as would be expected in reducing
environmental impacts. For example, the COT suggested that,
due to the negative correlations between on one hand ADG30
and ADG100 and on the other hand ProtLip, breeding for
increased ProtLip is a much more effective strategy to reduce
environmental impacts than increasing growth rate (see
Table 3 and Fig. 4 cluster 1). Similarly, an increase in piglet
mortality only has a minor effect on environmental impacts
when compared with reductions in sow feed intake and higher
litter size due to negative correlations between the traits in
cluster 2. This could be due to some simplifications in the
modelling process, where the interaction between sow and
piglet performance was only included in the sampling process,
and not as a causal effect implemented with deterministic
equations. During the last decade, the pig production industry
has moved towards higher sow replacement rates (AHDB
Pork, SEGES, personal communication), though multiple
publications have argued for lower sow replacement for eco-
nomic and welfare reasons (Stalder et al. 2003; Onteru et al.
2011; Gruhot et al. 2017). In this study, sow longevity and its
interaction with AgeMature had very little influence on the
environmental impact categories tested for cluster 3, which
could be partly due to their negative correlation.

The total SI highlighted the sensitivity of the environmental
impacts to changes in Maintenance and ProtLip; the sensitiv-
ity to other traits, including ADG100, was much lower. In a
similar pig LCA study on correlated traits (Reckmann and
Krieter 2015) also found that the environmental impacts of
pig production systems were most sensitive to ProtLip but
showed low sensitive to ADG100. ProtLip was one of the
most, but ADG100 was one of the least, sensitive traits. This
is in good agreement with the total SI where ProtLip was very
sensitive and ADG100 was not very sensitive. The discrepan-
cy between the outcome of the OAT and SI for ADG100,
ProtLip, and AMPar illustrates the importance of accounting
for genetic correlations between traits in pigs.

4.3 Methodological challenges

Due to necessity, many LCA studies implement a number of
simplifications to reduce the amount of data needed to build a
model. In livestock LCA models, a system is often described

by static inputs and outputs, with feed intake based on feed
conversion ratio and animal performance being independent
of feed intake, e.g. Kebreab et al. (2016). In this study, we
needed to investigate the effects of genetic changes in traits,
and feed intake was therefore a function of performance and
energy use. Further, we needed to integrate the sow system
with the production pig system, as many of the traits frequent-
ly targeted by the pig breeding sector have major effects on
both the production pig and the sow. To accurately model the
effect of longevity traits of the sow, we needed to adapt the
model to follow the sow from weaning to culling. This is
different from the commonly applied methodology, where
the reproductive system is modelled as an annual steady-
state system and replacement rate accounts for the number
of gilts imported into the system (Nguyen et al. 2011;
Mackenzie et al. 2015).

A common argument for not including correlations in LCA
modelling is the lack of data availability and the assumption
that correlations have minor influence on the outcome
(Heijungs 2010; Leinonen et al. 2016). We have shown in this
paper that while published genetic correlations for pig traits
may be limited in specific areas (i.e. we found no correlations
between the trait BWMaturity and traits such as LitterSize,
PostWMort and PreWMort), it was still possible through care-
ful weighting to develop a correlation matrix. Instead of
changing one variable at a time and accounting for correla-
tions in each scenario (Reckmann and Krieter 2015), we uti-
lized an unguided clustering technique, based on the pooled
correlation matrix, to ensure the COT was not affected by
personal bias. The limited availability of genetic variances
and correlations in literature represented a significant chal-
lenge for this study. Conception rates, digestive efficiency,
and constants related to the energy required for maintenance
by the pigs were all input parameters to the model, but data on
genetic correlations and variance of these traits were not avail-
able in literature. Major differences have, however, been sug-
gested among pig population for digestive efficiency (Noblet
et al. 2013) and heat production (Galassi et al. 2015; Kiarie
et al. 2015) which most likely is in turn heavily reliant on
maintenance. More studies with non-traditional pig trait ge-
netic correlations, bridging sow longevity and performance,
litter size and piglet performance, and grower/finisher perfor-
mance, would be beneficial for future research on the effects
of genetic changes to traits on environmental impacts.

Further, our work illustrated the very different requirements
regarding sample size when computing the model uncertainty
and the SI. Only 100 samples were required for sufficient pre-
cision in the uncertainty analysis, while the SI sensitivity anal-
ysis required 20,000 samples to achieve sufficient precision,
necessitating multiple hours of computing and fostered a num-
ber of coding challenges related to reaching the limits of avail-
able computer power. For now, this still represents a barrier for
the widespread adoption of global sensitivity analysis in
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complex LCA modelling as would be considered best practice
for quantitative modelling (Saltelli et al. 2008).

4.4 Sensitivity analyses in LCA

The three sensitivity analyses implemented in this study illus-
trate different applications of the model. The OAT methodol-
ogy highlighted the importance of every single trait indepen-
dent of the other traits. Even though OAT is flawed with
regard to correlations, the results of this analysis can show
the size of the effect each single trait has on the environmen-
tal impact of the production system. This has the potential to
be utilized to integrate environmental impact considerations
and even objectives into breeding programs. The possibilities
for using LCA modelling in this way have already been dem-
onstrated for pig systems in relation to diet formulation
(Mackenzie et al. 2016; Garcia-Launay et al. 2018).

The COT methodology reflects the genetic correlations
among the traits better than OAT and still shows the
possibilities of reducing EI in a more realistic way.
However, COT is not capable of taking the size of the
correlations into account, but can only differentiate be-
tween positive or negative correlations. The COT ap-
proach can effectively provide a sense check on any strat-
egies devised for reducing environmental impacts, based
on changing individual traits from the OAT method.
Finally, the SI methodology highlights the capabilities
of the traits to affect the environmental impacts, both
when looking at individual traits, the interactions of one
trait with another and the total influence the traits has on
the model. One drawback of the SI method is that the
output is an index, which is difficult to translate into an
environmental impact reduction and does not show which
direction a trait should be selected for to reduce impacts.
However, the SI approach can clearly be used to identify
the most important areas of focus when devising breeding
strategies to reduce environmental impacts, without the
need to fully integrate environmental objectives in the
breeding model. Even though the SI analysis has been
discussed before within modelling and engineering pub-
lications (e.g. Abbas and Morgenthal 2016; Kivekäs et al.
2018), and applied to a few animal systems (Godinot
et al. 2014; Wolf et al. 2017), it has never been applied
to animal LCA modelling. In this study, this method was
an essential part of analysing the effect of the genetic
correlations among traits.

Multiple global sensitivity analyses are available when
conducting LCA models. The methods covered in this paper
and possible supplementary sensitivity analyses are shown in
Fig. 2. We optioned against using the Sobol index, and the
expanded correlated version proposed by Jacques et al.
(2006), since the first does not account for correlations and
the second assumes there is no correlation between clusters,

which in our case was not true. The SI sensitivity method was
therefore chosen to account for correlations to their full ex-
tend. Since our study did not have access to correlations be-
tween the impacts in the primary production system of the
feed ingredients in the B matrix, it was not possible to test
the sensitivity of this part of the model.

Our study has illustrated the importance of an effective
sensitivity analysis that fully encompasses the correlations
among the stochastic variables. This is a central point for
future studies, since most LCA studies still present limited
data on the uncertainties of their models and few have
performed sensitivity analysis (Hellweg and Canals
2014). This could partly be due to the limitations of typ-
ical modelling programs, which leaves little control of the
modelling process and sensitivity test to the user
(Mackenzie et al. 2016; Groen and Heijungs 2017;
Tallentire et al. 2018). This study proposed a more flexi-
ble approach where exports from currently available LCA
software were used as inputs to a model on matrix form in
coding based modelling software.

The methodology illustrated in this paper is directly
applicable to LCA models looking to determine the influ-
ence of traits and/or genetic changes on the environmental
impacts of a given agricultural system. We have illustrated
that a correlation matrix can be compiled from sparse
data, and thereby weakened the argument of sparsity of
available correlation data as a reason for ignoring corre-
lations (Wei et al. 2015; Groen and Heijungs 2017). A
more thoroughly and systematic testing of the sensitivity
of biological models, as was done in this paper, could
reduce the gap between simulations and reality if imple-
mented into other systems. Further, the implementation of
energy animal modelling, together with a similar protein
estimation, could be used to predict realistic and optimal
diets for more general animal systems than the typical
diets often seen in LCA studies.

5 Conclusions

We have developed a novel methodology that is capable of
identifying the implications of changing specific correlated
traits for environmental impacts. This method is a robust
way to evaluate the effects of genetic correlations in pigs,
and we believe it could provide important insights if ap-
plied to other animal species. Our results showed that
Maintenance, ADG100, and some sow performance traits
were the most sensitive traits when tested one at a time, and
ProtLip and Maintenance were the most sensitive traits
when tested with global sensitivity. Further, we found that
it was essential to prioritize between beneficial traits when
breeding for a cluster of traits, and that grouped growth
traits were most effective in reducing the environmental
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impacts from the system. The notable divergence in esti-
ma t e s a c c o r d i ng t o d i f f e r e n t me t h odo l o g i c a l
implementations of sensitivity analysis indicates that ac-
counting for genetic correlations are essential when model-
ling the potential of genetic changes to traits in pigs to
reduce the environmental impacts of pig productions, and
by extension other livestock. Of the common traits included
in commercial breeding strategies, our study suggests a re-
duction in environmental impacts by improving growth and
feed efficiency traits, while improvements in mortality and
sow longevity only had minor effects on such impacts.
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