

EAAP 2018, Dubrovnik, Croatia

Effect of heat stress on fecal microbiota composition in swine

Le Sciellour M.¹, Hochu I.², Zemb O. ², Riquet J.², Gilbert H.², Giorgi M.³, Billon Y.⁴, Gourdine J.-L.⁵, Renaudeau D.^{1*}

¹PEGASE, INRA, Agrocampus-Ouest, 35042, RENNES, France
²GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31320, Castanet Tolosan, France
³PTEA, INRA, 97170 Petit-Bourg, France
⁴GenESI, INRA, 17700 Surgères, France
⁵URZ, INRA, 97170 Petit-Bourg, France

*Corresponding author: <u>david.renaudeau@inra.fr</u>

AGRO AMPUS

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Context and objectives

Context and objectives

- Heat stress (HS) : main concern for livestock production in many countries
- New methods to improve performances

Context and objectives

- Potential role of microbiota in pig metabolism
- Would help the host for better coping with environmental perturbations

Context and objectives

- Potential role of microbiota in pig metabolism
- Would help the host for better coping with environmental perturbations

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Experimental design

- 1,200 pigs raised under temperate or tropical climate
- Cross-bred Large White x Créole

- Fecal samples obtained at 23 wk (chronic HS n=600, thermoneutral n=600) and at 26 wk of age (acute HS n=600)
- Microbiota analysis : Illumina MiSeq sequencing \rightarrow Operational Taxonomic Units (OTU)

Experimental design

- 1,200 pigs raised under temperate or tropical climate
- Cross-bred Large White x Créole

- Fecal samples obtained at 23 wk (chronic HS n=600, thermoneutral n=600) and at 26 wk of age (acute HS n=600)
- Microbiota analysis : Illumina MiSeq sequencing \rightarrow Operational Taxonomic Units (OTU)

08/2018

Diversity

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

W23 W26 Temperate Tropical

Results Shannon index Nb counts ab b а b а а 3000 -7 -2500 -Alpha Diversity Measure 2000 -6-1500thereated actents provides thereoutid Acutetts chonichts 9 LE SCIELLOUR M. / Microbiota and heat stress

→ No clear diversity difference between the environments

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Principal Component Analysis

LE SCIELLOUR M. / Microbiota and heat stress

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Principal Component Analysis

LE SCIELLOUR M. / Microbiota and heat stress

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Principal Component Analysis

LE SCIELLOUR M. / Microbiota and heat stress

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Principal Component Analysis

2nd component: climate effect

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Sparse Partial Least Square Discriminant Analysis

Thermoneutral vs chronic HS

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

15

Results Sparse Partial Least Square Discriminant Analysis

Thermoneutral vs acute HS

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Sparse Partial Least Square Discriminant Analysis

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Conclusions

Microbiota information can be used to discriminate with accuracy:

- \rightarrow Pigs raised under different climate environments
- \rightarrow Pigs exposed to a heat stress

Microbiota composition can be used as biomarker of heat stress exposition in our experimentation

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Thank you for your attention

08/2018

LE SCIELLOUR M. / Microbiota and heat stress

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Results Sparse Partial Least Square Discriminant Analysis

Acute HS vs chronic HS

	Nb OTUs	Cumulative BER
1 st component	16	0.5%
1 st + 2 nd components	16 + 19	0.2%

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Experimental design

Temperature per batch under temperate climate

Ambient temperature (°C)

