

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

A decision support tool for sustainable swine nutrition

Veronika Halas¹; Jaap van Milgen², Galyna Dukhta¹, György Kövér¹

¹Kaposvár University, Guba S. 40, 7400 Kaposvár, Hungary ²PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531.

Adapting the **feed**, the **animal** and the **feeding techniques** to improve the efficiency and sustainability of monogastric livestock production systems

Feed-a-Gene research program aims to **better adapt** different components of monogastric livestock production systems (pigs, poultry and rabbits) to improve the **overall efficiency** of these systems, to **reduce their environmental impact**, and to enhance **food security** whilst maintaining food quality.

KRMIVA Conference, Opatija, Croatia

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Modelling working package

Develop biological models of livestock functioning to better understand and predict nutrient and energy utilization of animals along their productive trajectory and, based on these, develop Decision Support Systems.

KRMIVA Conference, Opatija, Croatia

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Aim of the presentation

- Illustrate the application of our model that predicts the nutrient partitioning in growing and fattening pigs.
- Demonstrate that FeedUtiliGene software can be a useful tool to study the animal response to dietary and some environmental factors.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Model use

Parameter estimation

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Model use

Case study 1: Minimaize N excretion

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Model use

Case study 2: Performance in heat stress

FI-B¥	FI-BV FI-BV		EL-BW data fi	le cample dat	data set 2											
			sampio_data_sot_z									Feed conv	ersion ratio			20
Feed	Feed		Food coquer	oo Sinale Hiah	CP	CP v						F 1 (1(-1))				²⁰
Ar	1000	Feed s	i eeu sequein					3.6			- dally	FI (Kg/d) FCR (ka/ka)				25.5
1 59	A		Age	°C	~			34			- FCR	(ka/ka)				20.0
2 60	1 59	Age	1 59	20				3.4			Tem	perature (°C)		(25
3 61	2 60	1 59	2 60	20				3.2			L		1			23
4 62	3 61	2 60	3 61	20										1		24.5
5 63	4 62	3 61	4 62	20				3-								24.5
6 64	5 63	4 62	5 63	20												24
7 65	6 64	5 63	6 64	20				2.8-								24
8 66	7 65	6 64	7 65	20				2.6-								
9 67	8 60	7 65	8 66	20		🗸 Temperatur	e effect active									23.5
10 68	9 6/	8 66	9 67	20				2.4								
11 69	10 68	9 67	10 68	24		C										
12 70	10 70	10 68	11 69	24		Set all range		2.2								
13 71	12 70	11 69	12 70	24		-		2								22.5 0
14 72	10 7	12 70	13 /1	24		l emperature	20	2								
15 73	14 72	13 71	14 72	24			Set values	1.8-		-		7		Ľ ۲	_	22
10 74	16 74	14 7Z	15 73	24												
17 75	17 75	10 73	10 74	26				1.6-			/				_	21.5
10 70	18 76	10 74	17 75	20		- Set temperatur	o rango	4.4								
19 77	19 77	17 75	18 70	20		- Set temperatur	erange	1.4-						1 1		21
20 70	20 78	10 70	20 78	20		Age range	74 78	1.2								
22 80	21 79	20 78	20 70	20		T .										20.5
23 81	22 80	20 70	22 80	20		Tempreature	range 26 26	1-								_
24 82	23 81	22 80	22 00	20			Set values	-		ij		·····	400		400	20
25 83	24 82	23 81	24 82	20					60	80	1	00	120	140	160	
26 84	25 83	24 82	25 83	20								Aye (0	ay)			
27 85	26 84	25 83	26 84	20												
28 86	27 85	26 84	27 85	20			Reset	Prec	ocity 🔳							0.006500
29 87	28 86	27 85	28 86	20												5.000000
30 88	29 87	28 86	29 87	20				mea	nPD							193.9076
31 89	30 88	29 87	30 88	20				FI50								14.9094
32 90	31 89	30 88	31 89	20				EHO	n —							
33 91	32 90	31 89	32 90	20				FILU	U							25.8613
34 92	33 91	32 90	33 91	20				BW_	init							23.6316
	34 92	33 91	34 92	20	\sim											Denet
		34 92	Anima	ll List	Ter	nperature	Feed Composition									Keset
			wiinta List		poracan		a composition									
		-]L									

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Conclusion

- FeedUtiliGene is a useful demonstration tool to study the response of a pig to different feeding schedule and ambient temperature.
- With some adaptation the model might be appropriate to be included in precision feeding systems.

Implication

Precision livestock farming and nutrition has a great potential to contribute to more sustainable animal production systems.

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Thank you for your attention!

EU funded Research project

2015

2020

Adapting the **feed**, the **animal** and the **feeding techniques** to improve the efficiency and sustainability of monogastric livestock production systems. (www.feed-a-gene.eu)

€10 M Budget

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531

5-7 June, 2019

KRMIVA Conference, Opatija, Croatia

9

23

Partners

EU + China

15

Industry

Academic