

# EFFECT OF GUT MICROBIOTA ON PRODUCTION TRAITS, INTERACTION WITH GENETICS

#### Hélène Gilbert

S Lagarrigue, L. Verschuren, O Zemb, M Velasco, JL Gourdine, R. Bergsma, D Renaudeau, JP Sanchez, H Garreau

INRA, France; Topigs Norsvin Research Center, The Netherlands; IRTA, Spain



# Between feed and meat

Digestion = building a microbiota

#### **Maternal transmission**

Genetics

Age

Sex



Physiological status

Contact with (others') feces

**MANAGEMENT** 

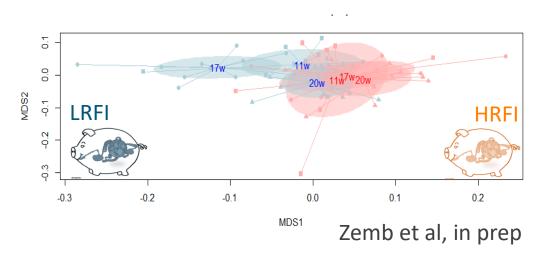
use of anti-microbials

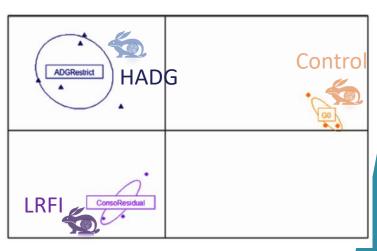
feed

water

animal density

temperature and humidity


• • •


- → What should be accounted for to improve performances thanks to microbiota?
- → How to disentangle and test the effects of these factors?



# Genetic determinism of microbiota composition

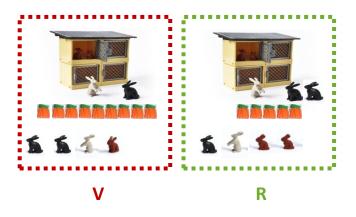
#### Based on selected <u>lines</u>





Drouilhet et al, JAS, 2016

→ Separate lines selected for different feed efficiency based on microbiota composition (DA-PC applied to OTU abundancy matrix)


#### Feed-a-Gene



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

## Genetic determinism

#### Within population

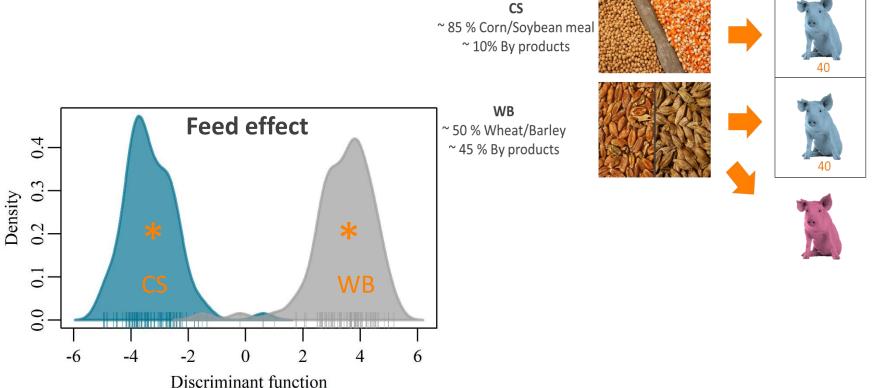


Bayesian estimation of variance components

Model **na**: no  $\sigma^2$ a

Model **a**:  $\sigma^2$ a

→ Deviance Information Criterion and BayesFactor computations


| Trait                     | h²   |
|---------------------------|------|
| Phylum relative abundance |      |
| Euryarcheota              | 0.13 |
| Actinobacteria            | 0.10 |
| Bacteroidetes             | 0.09 |
| Cyanobacteria             | 0.11 |
| Firmicutes                | 0.09 |
| Proteobacteria            | 0.11 |
| Tenericutes               | 0.08 |
| Verrucomicrobia           | 0.08 |
| Alpha index diversity     |      |
| #OTUs                     | 0.17 |
| Chao1                     | 0.18 |
| Shannon                   | 0.11 |
| Inverse Simpson           | 0.11 |
| Principal components (PC) |      |
| PC1                       | 0.09 |
| PC2                       | 0.11 |

#### Feed-a-Gene



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

## Feed effect

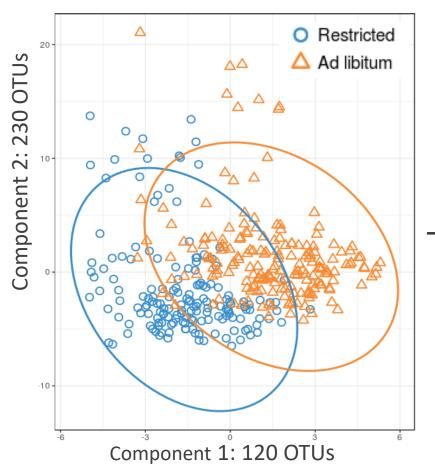


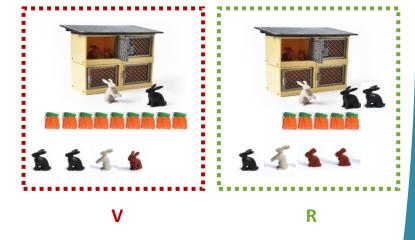
→ Contrasted feed compositions highly affect fecal microbiota

Day before slaughter

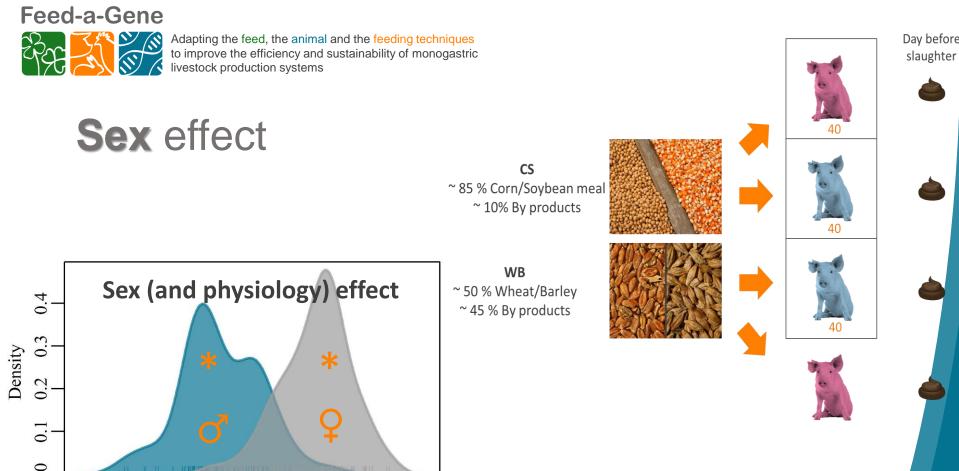







Verschuren et al, JAS, 2018



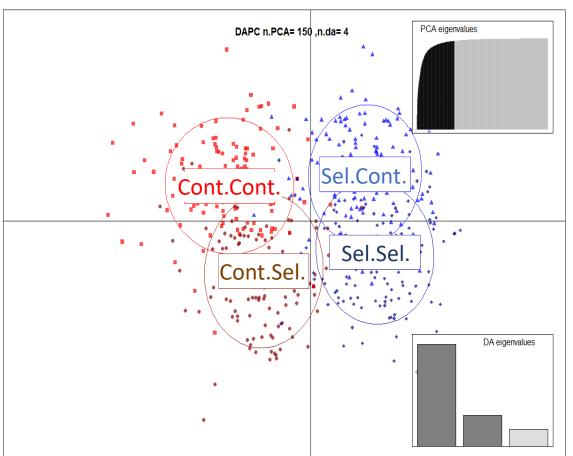

# Feeding level effect

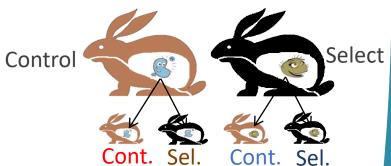




→ Feeding restricted or ad libitum affect fecal microbiota composition




→ Sex, potentially via sexual maturity, affects gut microbiota composition


Discriminant function



# **Maternal transmission**

#### Cross-fostering experiment





→ The kit line is the primary effect, but the dam line also nicely separates the individuals

# Production traits: accounting for genetics

#### 1. Model ignoring the effect of microbial composition

$$y = X\beta + a + e$$

# FIXED EFFECTS Xβ RANDOM EFFECTS

Additive direct genetic: a ~ NMV (0, Aσ²a)

#### 2. Model accounting for the effect of microbial composition

$$y = X\beta + a + b + e$$

#### RANDOM EFFECTS

- Additive direct genetic: a ~ NMV (0, Aσ²<sub>a</sub>)
- Effect of the microbiome:  $\mathbf{b} \sim \text{NMV}(0, \mathbf{B}\sigma_B^2)$

B =?  
microbiability 
$$\mathbf{b^2} = \sigma_B^2 / \sigma_P^2$$

13/09/2018



# Production traits models: accounting for all confusion factors

Model accounting for the effect of microbial composition

$$y = X\beta + a + c + m + j + b + e$$

#### RANDOM EFFECTS

• Additive direct genetic  $\mathbf{a} \sim N(0) \begin{bmatrix} \sigma_a^2 & \sigma_{am} \\ \sigma_{am} & \sigma_m^2 \end{bmatrix} \otimes \mathbf{A}$ • Maternal genetic  $\mathbf{m} \sim N(0) \begin{bmatrix} \sigma_a^2 & \sigma_{am} \\ \sigma_{am} & \sigma_m^2 \end{bmatrix}$ 

- Litter:  $\mathbf{c} \sim \text{NMV} (0, \mathbf{I}\sigma^2)$
- Pen:  $\mathbf{j} \sim \text{NMV}(0, \mathbf{I}\sigma^2_i)$
- Effect of the microbiome:  $\mathbf{b} \sim \text{NMV} (0, \mathbf{B}\sigma_B^2)$

axb?

13/09/2018



### Production traits models





|                | w/o b         | with b      |
|----------------|---------------|-------------|
| h²             | 0.15 (0.04) > | 0.06 (0.03) |
| c <sup>2</sup> | 0.26 (0.06) > | 0.14 (0.05) |
| b <sup>2</sup> | -             | 0.56 (0.11) |
| j²             | 0.12 (0.03) > | 0.05 (0.02) |

**b** ~ NMV (0,  $\mathbf{B}\sigma^2_B$ ) **B**=f(wUnifrac dm)

→ An important % of the total phenotypic variance is explained by microbial composition



# Summary

- ▶ Plenty of factors significantly affect gut microbiota composition → need to disentangle
- Some microbiota are related to production traits (statistical associations)
  - Causality? Joint effect of other factors?



13/09/2018

# Discussion

- Ignored the diversity of OTU tables (content and rules to obtain them)
- Ignore the diversity of B
- Plenty is missing, keep digging
- What can be used for livestock at the moment?
  - For management?
  - For breeding?

Genetics
Maternal transmission
Age
Contact with (others') faeces
Sex
Physiological status

use of anti-microbioals

feed

water

animal density

temperature and humidity (see Le Sciellour et al,

Thursday morning)

13/09/2018 ....