Use of a dynamic mechanistic broiler model to reduce environmental footprint

Galyna Dukhta¹, Jaap van Milgen², György Kövér¹, Veronika Halas¹

¹Kaposvár University, Guba S. 40, 7400 Kaposvár, Hungary
²PEGASE, Agrocampus Ouest, INRA, 35590, Saint-Gilles, France
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Introduction

digestive physiology and metabolism of avian species

N and P concentration in poultry manure is high

adequate dietary N (AAs)

phytic acid bounded form of P
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Halas et al. (2017), Dukhta et al. (unpublished)
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Optimal dietary CP as suggested by the model and the CP content of the feeds in different phases of two scenarios

Sc1 – Ross recommendations, Sc2 – multiple phases feeding
req Sc1, 2 – available P requirements within scenarios 1 and 2, respectively
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Optimal dietary CP as suggested by the model and the CP content of the feeds in different phases of two scenarios

Sc1 – Ross recommendations, Sc2 – multiple phases feeding
req Sc1, 2 – available P requirements within scenarios 1 and 2, respectively

5-7 June, 2019
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems.
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Optimal dietary available P as suggested by the model and the avP content of the feeds in different phases of two scenarios

Sc1 – Ross recommendations, Sc2 – multiple phases feeding
req Sc1, 2 – available P requirements within scenarios 1 and 2, respectively
Optimal dietary available P as suggested by the model and the avP content of the feeds in different phases of two scenarios

Sc1 – Ross recommendations, Sc2 – multiple phases feeding
req Sc1, 2 – available P requirements within scenarios 1 and 2, respectively
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems.

Optimal dietary available P as suggested by the model and the avP content of the feeds in different phases of two scenarios

Sc1 – Ross recommendations, Sc2 – multiple phases feeding
req Sc1, 2 – available P requirements within scenarios 1 and 2, respectively
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Distribution of N

- N Intake Sc1
- N Intake Sc2
- digN Intake Sc1
- digN Intake Sc2
- retained N Sc1
- retained N Sc2
- N excreted Sc1
- N excreted Sc2
- obl N loss Sc1
- obl N loss Sc2

5-7 June, 2019
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems.

Distribution of N

- N Intake Sc1
- N Intake Sc2
- digN Intake Sc1
- digN Intake Sc2
- retained N Sc1
- retained N Sc2
- N excreted Sc1
- N excreted Sc2
- obl N loss Sc1
- obl N loss Sc2

Table:

<table>
<thead>
<tr>
<th>Age, days</th>
<th>N Intake Sc1</th>
<th>N Intake Sc2</th>
<th>digN Intake Sc1</th>
<th>digN Intake Sc2</th>
<th>retained N Sc1</th>
<th>retained N Sc2</th>
<th>N excreted Sc1</th>
<th>N excreted Sc2</th>
<th>obl N loss Sc1</th>
<th>obl N loss Sc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7 June, 2019</td>
<td>152.3 g</td>
<td>121.8 g</td>
<td>75.7 g</td>
<td>132.37 g</td>
<td>106.2 g</td>
<td>75.7 g</td>
<td>15.7 g</td>
<td>30.4 g</td>
<td>18.1 g</td>
<td>15.7 g</td>
</tr>
</tbody>
</table>

Graphs showing the distribution of N over time.
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems.
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems.

Distribution of P

- P Intake Sc1
- P Intake Sc2
- digP Intake Sc1
- digP Intake Sc2
- retained P Sc1
- retained P Sc2

Age, d	P, g/d
0 | RETAINED P
10 | 12.9 g
20 | 15.8 g
30 | 35.1 g
40 | 42.7 g

P Intake Sc1 | 19.2 g
P Intake Sc2 | 12.9 g

Age, d	P, g/d
0 | P excreted Sc1
10 | 3.5 g
20 | 6.4 g
30 | 12.9 g
40 | 42.7 g

P excreted Sc1 | 12.9 g
P excreted Sc2 | 2.9 g

Age, d	P, g/d
0 | obl P loss Sc1
10 | 0.8 g
20 | 2.9 g
30 | 3.5 g
40 | 12.9 g

obl P loss Sc1 | 0.8 g
obl P loss Sc2 | 2.9 g
Conclusion

Since the levels of digestible N and available P in the feeds are known, the distribution of absorbed nutrients in the metabolism can be simulated.

This approach may allow a better understanding of the concept of feed use mechanism for the decision to be taken.

The model is an excellent tool to design alternative feeding strategies for animal production with a low environmental footprint.
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems.

(www.feed-a-gene.eu)