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Abstract 

Background: Indirect genetic effects (IGE) are important components of various traits in several species. Although 
the intensity of social interactions between partners likely vary over time, very few genetic studies have investigated 
how IGE vary over time for traits under selection in livestock species. To overcome this issue, our aim was: (1) to ana‑
lyze longitudinal records of average daily gain (ADG) in rabbits subjected to a 5‑week period of feed restriction using 
a structured antedependence (SAD) model that includes IGE and (2) to evaluate, by simulation, the response to selec‑
tion when IGE are present and genetic evaluation is based on a SAD model that includes IGE or not.

Results: The direct genetic variance for ADG (g/d) increased from week 1 to 3 [from 8.03 to 13.47 (g/d)2] and then 
decreased [6.20 (g/d)2 at week 5], while the indirect genetic variance decreased from week 1 to 4 [from 0.43 to 0.22 
(g/d)2]. The correlation between the direct genetic effects of different weeks was moderate to high (ranging from 0.46 
to 0.86) and tended to decrease with time interval between measurements. The same trend was observed for IGE for 
weeks 2 to 5 (correlations ranging from 0.62 to 0.91). Estimates of the correlation between IGE of week 1 and IGE of 
the other weeks did not follow the same pattern and correlations were lower. Estimates of correlations between direct 
and indirect effects were negative at all times. After seven generations of simulated selection, the increase in ADG 
from selection on EBV from a SAD model that included IGE was higher (~ 30%) than when those effects were omitted.

Conclusions: Indirect genetic effects are larger just after mixing animals at weaning than later in the fattening 
period, probably because of the establishment of social hierarchy that is generally observed at that time. Accounting 
for IGE in the selection criterion maximizes genetic progress.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The genes that an individual carries and the environment 
in which it lives determine its phenotype. In various situ-
ations, during the pre-weaning period or in the case of 
group housing for instance, other individuals are part 
of the environment of the focus animal. Thus, the phe-
notype of an individual is influenced by its interactions 
with other individuals of the group. Such interactions 
may be positive (e.g. maternal effects or sterile helpers in 
social insects [1]) or negative (e.g. competition for lim-
ited resources or aggressive social behavior [2–4]) and 

are driven by other phenotypes of the group mates that 
generally are not recorded or measurable but can have 
a genetic component. Consequently, genetics of group 
mates or the dam may influence the focal phenotype. 
Such effects are known as indirect genetic effects (IGE) 
[5, 6] and have been reported to be important compo-
nents of various traits in different species [2–4, 7]. Their 
role in the evolutionary processes of wild species and in 
response to selection in livestock species have also been 
explored [8].

The intensity of social interactions can depend highly 
on external factors, such as the number of interacting 
individuals [9, 10] and rearing conditions. For instance, 
Piles et al. [7] recently showed that IGE for average daily 
gain (ADG) were stronger for rabbits under a restricted 
feeding regime than for rabbits fed ad  libitum. In 
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addition, interactions between group members can also 
vary over time. Several studies have shown that aggres-
sive behavior of animals in group housing conditions is 
generally stronger at mixing and tends to decrease over 
time [11–13], which suggests that IGE can vary over 
time. Nonetheless, very few genetic studies have investi-
gated changes of IGE over time for traits under selection 
in livestock species. To overcome this, the objectives of 
our study were to analyze longitudinal records of ADG in 
rabbits using a structured antedependence (SAD) model 
[14] that includes IGE and to evaluate, by simulation, 
response to selection on longitudinal ADG using differ-
ent selection strategies. The idea of the SAD approach is 
to model an observation at time t by regression on the 
preceding observations. We chose to model a longitudi-
nal trait with IGE using a SAD model because of the fol-
lowing advantages over the two main classical approaches 
used in genetic studies for longitudinal data, i.e. character 
process (CP) and random regression (RR) models: (1) 
the SAD approach can account for non-stationarity at 
the level of variances and correlations [14], in contrast to 
the CP approach, while the RR approach cannot model a 
situation with stationarity at the variance level and cor-
relation between time points different than 1; and (2) 
extension of the SAD approach to the multiple-trait case 
is straightforward, in contrast to the CP approach, and 
requires fewer parameters than the RR approach [15]. 
The same applies to the case of correlated random effects 
in the analysis of just one phenotype, which is the case of 
correlated direct and indirect effects in our study.

Methods
Animals and housing conditions
Animals were raised on the experimental farm of IRTA 
in Spain between July 2012 and June 2014. A detailed 
description of the experiment is in Piles et al. [7]. In short, 
after weaning (32 d of age), kits were housed in cages 
(0.38 m2) of eight individuals and fed under a restricted 
feeding regime corresponding to 75% of ad  libitum feed 
intake during 5  weeks. To obtain a feed restriction of 
25%, the amount of food given during week j was com-
puted as 0.75 times the average feed intake of contempo-
rary kits that were on a full feeding regime during week 
j − 1, plus 10% to account for the estimated increase in 
feed intake of growing animals. For week 1, the amount 
of feed for the restricted feeding regime was computed 
from data recorded in previous experiments on the same 
line from animals on a full feeding regime raised dur-
ing the same season (multiplied by 0.75, 10% increase 
not included). Feed (commercial pellets for rabbits with 
(weeks 1 to 4) or without (week 5) antibiotics, as detailed 
in Piles et al. [7]) was distributed once a day in a 3-place 
feeder. Water was available ad libitum (one nipple drinker 

per cage). Individual body weights (BW) were recorded 
at weaning and weekly after weaning. Average daily gain 
(g/d) for each week was calculated as the change in BW 
from the beginning to the end of the week divided by the 
number of days elapsed (7 ± 1 d). On the weighing day, 
information regarding the animal health status was also 
recorded. Groups with animals showing disease symp-
toms (not caused by antagonist behaviors) or groups who 
suffered death events during the week were discarded 
from the analyses. The final dataset comprised 11,255 
ADG records from 3096 individuals born in 1106 lit-
ters. The pedigree included information on 7701 rabbits. 
Descriptive statistics for the weekly ADG records are in 
Table 1.

Data analysis
Let yilm(wj), be the ADG of animal i (1 ≤ i ≤ 3096), born 
in litter l (1 ≤ l ≤ 1106), raised in group m (1 ≤ m ≤ 387), 
during week (1 ≤ j ≤ 5). The linear mixed model used to 
study ADG was:

where μi (wj) represents the fixed effects at week j, Ki the 
set of the seven group mates of focal individual i, and 
DGEi (wj), IGEk (wj), ll (wj), gm (wj) and pi (wj) are the 
direct genetic, indirect genetic, litter, group, and pseudo-
permanent animal effects for week wj, respectively. The 
litter, group and pseudo-permanent random effects were 
independent from each other and distributed  
as: l ∼ N (0, Il ⊗ �l), g ∼ N

(

0, Ig ⊗ �g

)

 , and 
p ∼ N

(

0, Ip ⊗ �p

)

 , where �l , �g and �p are 5 × 5 
covariance matrices corresponding to litter, group, and 
pseudo-permanent animal effects, respectively, for the 
5-week period of observation, and Il , Ig and Ip are iden-
tity matrices of appropriate size. Conversely, the direct 
and indirect genetic effects were correlated 
[

DGE
IGE

]

∼ N (0,A ⊗ �GE) , where �GE is the 10 × 10 

(1)

yilm
(

wj

)

= µi

(

wj

)

+ DGEi
(

wj

)

+
∑

k∈Ki

IGEk
(

wj

)

+ ll
(

wj

)

+ gm
(

wj

)

+ pi
(

wj

)

,

Table 1 Descriptive statistics for average daily gain (g/d)

Week N Mean Standard 
deviation

Range

1 2687 26.51 10.25 [0.83, 70.71]

2 2624 37.54 11.49 [3.57, 76.25]

3 2280 42.02 11.10 [3.57, 82.14]

4 1944 40.11 13.27 [0.71, 89.00]

5 1720 41.20 10.90 [3.33, 87.14]
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(co)variance matrix for the genetic effects (5  weeks for 
the direct genetic effects and 5  weeks for the indirect 
genetic effects) and A is the additive relationship matrix 
based on pedigree. Possible non-null covariances 
between random effects at different times were taken 
into account using a SAD approach [16–18]. It should be 
noted that this model does not include a residual term to 
help convergence and to avoid identifiability problems 
between structured permanent and classical residual 
covariance matrices [19], as in previous studies using the 
SAD approach [15, 17]. Thus, the residual variance was 
by definition included in the (co)variance matrix of the 
pseudo-permanent animal effects of the model.

For a given random effect, independent from the other 
random effects of the model, p for instance, the general 
form of the SAD model of order α for animal i was: 
pi
(

wj

)

=
∑α

s=1 θs,jpi
(

wj−s

)

+ ep,i
(

wj

)

 , where θsj is the sth 
antedependence parameter for week j, and ep,i (wj) is the 
error term, normally distributed with mean 0 and innova-
tion variance σp

2 (wj). Parameters θsj and σp
2 (wj) were 

assumed to be continuous functions of time: 
θs,j =

∑βs
q=0 asqw

q
j  , for a function of degree βs, and 

σ 2
p

(

wj

)

= exp
(

∑γ
q=0 bqw

q
j

)

 , for a function of degree γ. 

The SAD models were then defined by the order of the 
antedependence (α), the degree of the polynomial for each 
antedependence parameter (β1 to βα), and the degree of the 
polynomial for the innovation variance (γ). We denote the 
different SAD models with those parameters as follows: 

SADα− β1 . . . βαγ
 . For instance, a SAD1-12 model corre-

sponds to a SAD model with antedependence of order 1, 
and degrees 1 and 2 for the polynomial functions of the 
antedependence parameter and the innovation variance, 
respectively. A detailed description of this model is in 
Additional file 1.

In the case of correlated random effects (direct and indi-
rect genetic effects), the dependence between the two 
terms was also considered using a SAD model, which is a 
particular case of the multiple-trait SAD model that was 
proposed by David et al. [20]. The general form of the SAD 
model for correlated effects of order α and α′ can be writ-
ten as (for two effects, DGE and IGE, and for 

j > max
(

α,α′
)

)
:

DGEi
(

wj

)

=

α
∑

s=1

θsjDGEi
(

wj−s

)

+ δjIGEi
(

wj

)

+ eDGE,i
(

wj

)

,

IGEi
(

wj

)

=

α′
∑

s=1

θ ′sjIGEi
(

wj−s

)

+ eIGE,i
(

wj

)

,

where notations are the same as for the SAD model for 
independent effects and δj is the cross-antedependence 
parameter at week j. The parameter δj was assumed to be 
a polynomial function of time.

The fixed effects included in the model and described 
in Piles et al. [7] were first selected step by step by com-
paring nested models using the likelihood ratio test. 
The fixed effects were week  *  body size (10  levels) and 
week  *  batch (70 levels) combinations, litter size (7 lev-
els), and parity level (4 levels). After selection of fixed 
effects, the order and degree of the antedependence 
parameters were selected for each random effect in 
a model that assumed independence between direct 
and indirect genetic effects. Selection was performed 
by comparing nested models using the likelihood ratio 
test. Then, the correlation between direct and indirect 
genetic effects was included in the model. The degree of 
the cross-antedependence function (δj) was also selected 
using the likelihood ratio test. The SAD model was fit-
ted to the data using ASReml [21] and the OWN Fortran 
program that combines the single and multiple-SAD pro-
grams that we have recently developed (https ://zenod 
o.org/recor d/19203 6 [20]), such that the two approaches 
can be applied in the same model, making it possible to 
consider cross-antedependence between direct and indi-
rect genetic effects. The OWN program is freely available 
online at https ://zenod o.org/recor d/12280 58.

Once the SAD model has converged, parameter esti-
mates ( ̂ω ) can be used to compute estimates of the (co)
variance matrix of the different random effects. For a 
given random effect, �̂ =

(

L̂′D̂−1L̂
)−1

 , where D̂ is a 

diagonal matrix with innovation variance estimates as 
components, L̂ is a lower triangular matrix with 1’s on 
the diagonal and negatives of the cross-antedependence 
parameter estimates below the diagonal entries [22].

The total phenotypic variance was calculated for each 
week j and for a group size of 8 as [23]:

where σ2DGEj , σ
2
IGEj and σDGEj,IGEj are the direct and indi-

rect genetic variances and their covariance for week j, 
respectively, σ2lj , σ

2
gj

 and σ2pj are the litter, group and 
pseudo-permanent variances for week j, respectively, and 
r is the average genetic relationship among cage mates, 
which was 0.16 in this study [7]. Estimates of direct, indi-
rect and total heritabilities were computed for each week 
j as the ratio of the direct genetic, total indirect genetic 
( 49σ2IGEj [1]) and total heritable variance 

σ2Tj =σ2DGEj + 7σ2IGEj + 7r
[

2σDGEj,IGEj + 6σ2IGEj

]

+ σ2lj + σ2gj + σ2pj,

https://zenodo.org/record/192036
https://zenodo.org/record/192036
https://zenodo.org/record/1228058
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( σ2TBVj = σ2DGEj + 14σDGEj ,IGEj + 49σ2IGEj
 [24]), respec-

tively, relative to the total phenotypic variance. To obtain 
standard errors of the co-variance and heritability esti-
mates, we performed a multivariate normal sampling 
approach of ω̂ , as described in Houle and Meyer [25]: 
ω̃ ∼ N

(

ω̂, H
(

ω̂

))

 , where H
(

ω̂

)

 is the inverse of the 
information matrix at convergence. We sampled ω̃ 10,000 
times, computed �̃ and heritabilities for each sample, and 
removed samples that led to a non-positive semi-definite 
matrix of �̃ . Estimates of heritabilities and �̂ were the 
mean of the heritabilities and �̃ across samples and their 
standard errors were the standard deviation of the sam-
ples. In addition, we calculated correlations between ele-
ments of �̃ to assess the estimability of the covariance 
components in this complex model.

Simulation to assess response to selection
To evaluate the advantage of the SAD model with IGE for 
genetic selection of longitudinal traits that are affected 
by IGE in comparison with a model that ignores IGE, 
we performed a simulation study with genetic selection. 
The simulated population was a closed nucleus of dis-
crete generations and constant size. The base population 
consisted of 30 unrelated sires and 120 unrelated dams. 
Each founder sire was mated to four founder females to 
give birth to 960 offspring (8 offspring per mating and a 
50/50 sex ratio). Then, among the offspring, one male per 
sire and 120 females were randomly selected to be breed-
ers of the next generation. During the genetic selection 
process over seven generations, the best male per sire (i.e. 
30 males) and the best 120 females were selected at each 
generation to be breeders of the next generation. The 
choice of the “best” animals was based on their estimated 
breeding values (EBV) that were calculated according to 
the genetic evaluation strategies described below. Each 
selected male was randomly mated to four of the selected 
females, avoiding individuals from the same sire family.

The population and phenotypes were generated to 
match the previously described experimental data design. 
Individuals in each generation were assigned to groups of 
eight animals, with each group originating from four full-
sib families and each family contributing two progeny. 
Individual phenotypes (5 records per animal, corre-
sponding to 5  weeks of fattening) were constructed 
according to a multiple trait model that considered ADG 
as a different trait for each week. Average daily gain of 
each animal was computed for each week as the sum of: a 
week effect, the animal’s direct genetic effect for the cor-
responding week, the indirect genetic effects of the seven 
other pen mates for the corresponding week, a week-spe-
cific group effect, and a pseudo-permanent effect 

(correlated within animal): yim

(

wj

)

= µi

(

wj

)

+ DGEi
(

wj

)

+
∑

k∈Ki
IGEk

(

wj

)

+ gm
(

wj

)

+ pi
(

wj

)

 , (= Eq.  (1) 
without litter effects). For each generation, multivariate 
normal distributions with unstructured covariance 
matrices were used to simulate the random effect values 
for each time point (genetic effects, group effect and 
pseudo-permanent effect). To stick as close as possible to 
reality, (co)variance values used in the unstructured 
matrices were close to those obtained with the SAD 
model in the data analysis step (detailed values in Addi-
tional file 2). For the genetic effects, to better assess the 
impact of the correlation between direct and indirect 
effects on selection response, we considered three sets of 
parameters for the genetic (co)variance matrix to mimic 
weak, moderate, and strong genetic antagonism between 
direct and indirect effects. For these sets, the genetic 
covariance matrix was the same as that obtained in the 
data analysis part of the study but three different sets of 
values were assigned to the direct–indirect covariances: 
values similar to those estimated in the data analysis part 
of the study (strong antagonism), those values divided by 
2 (moderate antagonism) or by 4 (weak antagonism). 
Direct and indirect breeding values of the founders were 
simulated as for the other random effects. Then, the 
direct and indirect breeding values of an offspring were 
simulated as the average breeding value of its parents 
plus a Mendelian sampling deviation, which was sampled 
from a multivariate normal distribution with covariance 
corresponding to half of the genetic covariance matrix.

Three selection scenarios were investi-
gated. In scenario (1), a SAD model that 
ignored IGE was used to predict genetic ef - 
fects [ yim

(

wj

)

= µi

(

wj

)

+ DGEi
(

wj

)

+ gm
(

wj

)

+ pi
(

wj

)

 , 
SAD1-11 for all random effect functions] and the sum of 
the weekly direct EBV was used as the selection criterion. 
In scenarios (2) and (3), a SAD model (same orders and 
degrees for the polynomial functions as those selected in 
the data analysis part of the study) with IGE was used to 
predict direct and indirect genetic effects for each time 
point [Eq.  (1) with litter effects excluded]. The estimate 
of the total breeding value for each time point (i.e. weekly 
TEBV) was then computed as the sum of the direct EBV 
plus 7 times the indirect EBV of the corresponding time 
point leading to five TEBV per animal. In scenario (2), 
the selection criterion was the TEBV of the first week, 
while the sum of the weekly TEBV was used as the selec-
tion criterion in scenario (3). Variance components were 
estimated with the SAD model that included IGE [selec-
tion strategies (2) and (3)] or not [selection strategy (1)] 
using the 4800 records of the 960 offspring of the base 
population. Then, variance components were fixed to 
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their estimates and considered as known to predict EBV 
in the different generations of the selection population.

The simulation was replicated 150 times. After all rep-
licates were run, we assessed the capability of the SAD 
model with IGE to correctly account for the longitudinal 
structure of the data by assessing the standard deviation 
and the mean bias of each estimated variance component. 
Responses to the three selection strategies were com-
pared based on the mean ADG in each generation.

Results
Parameter estimates
Mean ADG was 26.5  g/d for week 1, increased by 50% 
from week 1 to 3, and then remained constant (Table 1). 
This increase was associated with a small decrease in the 
coefficient of variation for ADG (38% for week 1 and  26% 
for week 5). Weekly ADG ranged from 0.7 to 89.0  g/d, 
which is quite large.

After selection of models, we retained the SAD1-11 
model for all random effect functions and a polyno-
mial function of degree 1 for the cross antedependence 
parameter δ that models the covariance between the 
direct and indirect genetic effects. The likelihood ratio 
test comparing this full SAD model to the same SAD 
model in which IGE were excluded was 40.52 (8 degrees 
of freedom).

Estimates of variances of the pseudo-permanent, lit-
ter, and group effects for each week and their correlations 
between weeks that were obtained from the parameter 

estimates of the SAD model are presented in Figs.  1, 2 
and 3, respectively. The pseudo-permanent effect vari-
ance increased with time from 23.1 to 52.8 (g/d)2. The 
ratio of the standard error to the pseudo-permanent 
effect variance was quite stable over time (~ 0.03). Esti-
mates of correlations between the pseudo-permanent 
effects for different weeks were rather low and not sig-
nificantly different from 0, except between consecutive 
weeks from week 2 to week 5, for which they were low 
and negative[− 0.08 (± 0.02) for weeks 2  to  3, − 0.13 
(± 0.02) for weeks 3  to  4, and − 0.18 (± 0.03) for weeks 
4 to 5]. The variance of litter effects decreased with time 
from 8.7 to 4.2 (g/d)2. Estimates of correlations between 
the litter effects for the different weeks were always 
positive and tended to decrease with the time interval 
between weeks. These correlations were higher between 
the four last weeks (ranging from 0.37 to 0.84) than 
between week 1 and the other weeks (ranging from 0.14 
to 0.38). The estimate of the variance of the group effect 
increased with time from 5.7 to 16.4 (g/d)2. Estimates 
of correlations between the group effects of consecu-
tive weeks tended to be negative (ranging from − 0.20 to 
− 0.26) and null otherwise.  

Estimates of genetic variances and correlations are 
in Fig.  4. Estimates of genetic variances were not sig-
nificantly different between consecutive weeks for 
both direct and indirect genetic effects. However, the 
observed general trend was an increase of the direct 
genetic variance from weeks 1 to 3 [from 8.03 to 13.47 
(g/d)2] followed by a decrease [6.20 (g/d)2 at week 5], and 

Fig. 1 Estimates of pseudo‑environmental variances for each week 
(on the diagonal, SE in brackets) and of correlations between weeks 
(below the diagonal.)

Fig. 2 Estimates of litter variances for each week (on the diagonal, SE 
in brackets) and of correlations between weeks (below the diagonal)
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a decrease of the indirect genetic variance [from 0.44 
to 0.22 (g/d)2] from weeks 1 to 4. Then, for week 5, the 
indirect genetic variance increased but the associated 
standard error was substantial [0.31 (± 0.18)]. Estimates 
of correlations between the direct genetic effects for dif-
ferent weeks were moderate to high (ranging from 0.46 
to 0.86) and tended to decrease with the time interval 

between measurements. The same trend was observed 
for the indirect genetic effects for weeks 2 to 5 (correla-
tions ranging from 0.62 to 0.91). Estimates of correlations 
of indirect genetic effects of the first week with those of 
other weeks did not follow the same pattern and were 
weaker (ranging from 0.33 to 0.47). Estimates of genetic 
correlations between direct and indirect effects were neg-
ative within (ranging from − 0.57 to − 0.89) and between 
weeks (ranging from − 0.33 to − 0.84).

Heritability estimates are in Table 2. Estimates of direct 
heritability were moderate for weeks 1 to 4, ranging from 
0.15 to 0.24, and its associated standard error was stable 
over time (0.02 to 0.03). For week 5, the estimate of direct 
heritability was lower [0.08 (± 0.02)]. The estimate of the 
heritability of indirect genetic effects 
( 49σ2IGEj/total phenotypic variance in week j) was mod-
erate (ranging from 0.16 to 0.44). Although estimates of 
indirect heritability were not significantly different 
between weeks, we observed that this heritability was 2.5 
times higher for week 1 than for the other weeks. Esti-
mates of total heritability were low to moderate (ranging 
from 0.05 to 0.19) and were associated with large stand-
ard errors (0.04 to 0.10). Although estimates of total her-
itability were not significantly different between weeks, 
we observed that it tended to decrease from week 1 to 4.

Estimation efficiency of variance components
Estimates of variance components converged for both 
SAD models (with or without IGE) for only a percentage 
of the simulation replicates (for 79, 77 and 48% of the 
replicates for the scenarios with weak, moderate, and 
strong simulated antagonism between direct and indirect 
genetic effects, respectively). Consequently, replicates for 
which one of the two SAD models did not converge were 
removed from the analysis. Table 3 includes the bias and 
variability over the replicates that converged for each var-
iance component from the SAD model that included 
IGE. Bias and variability of variance components were 
not affected by size of the genetic antagonism between 
direct and indirect effects, except for estimates of the 
indirect genetic variance and indirect genetic correlation. 
Coefficients of variation ( std(ω̂)

E(ω̂)
∗ 100% ) were in the same 

range for the direct genetic and group variances (~ 19 
and 17%, respectively) but were higher for the indirect 
genetic variances and increased from 39 to 58% as the 
genetic antagonism decreased. The direct genetic vari-
ance was correctly estimated (the mean relative bias, 
(

E
(

ω̂
)

− ω
)

/ω , ranged from 1 to 2%), while the group 
variance tended to be slightly underestimated (mean rela-
tive bias ~ − 4%) and the indirect genetic variance was 
overestimated (mean relative bias ranging from 18 to 
27%). All correlations were correctly estimated, with a 

Fig. 3 Estimates of group variances for each week (on the diagonal, 
SE in brackets) and of correlations between weeks (below the 
diagonal)

Fig. 4 Estimates of genetic variances for each week (on the diagonal, 
SE in brackets) and of correlations between weeks and between 
direct and indirect genetic effects (below the diagonal)
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bias close to 0, except the indirect genetic correlation, 
which was slightly overestimated (bias ranging from 
− 0.09 to − 0.03). The standard deviations of the group 
and the direct genetic correlations were in the same 
range (~ 0.07), while the standard deviation for the 
direct–indirect genetic correlation was higher (~ 0.15) 
and the standard deviation for the indirect genetic effects 
was the highest (~ 0.26).

Response to selection
Changes in the mean ADG per generation are shown in 
Fig. 5 for the three selection strategies and the three sets 
of genetic antagonism between direct and indirect effects. 
For the three scenarios, the mean ADG increased linearly 
with generation when a SAD model including IGE was 

used to predict EBV. For the three sets of genetic antago-
nism between direct and indirect effects, the increase 
was highest when selection was performed using the 
sum of the weekly TEBV obtained with a SAD model that 
included IGE. Selection on the TEBV of week 1 obtained 
with a SAD model that includes IGE or on the direct EBV 
obtained with a SAD model that ignores IGE resulted in 
similar increases in ADG per generation, except when a 
strong genetic antagonism between direct and indirect 
effects was simulated. In that case, the model with IGE 
outperformed the model without IGE, for which there 
was no response to selection. For all selection strategies, 
response in ADG declined as the genetic antagonism 
between direct and indirect effects increased.

The effects of the different selection strategies and 
scenarios across the different weeks of growth were also 
explored by assessing the mean ADG by week in the 
7th generation, relative to the base generation (Fig. 6). 
When a weak to moderate genetic antagonism between 
direct and indirect effects was simulated, the same 
pattern was observed: ADG increased for all weeks 
and for all selection strategies. As expected, response 
to selection at week 1 was higher with selection on 
the TEBV of week 1 obtained with a SAD model that 
included IGE. The pattern was different with a strong 
genetic antagonism between direct and indirect effects. 
On the one hand, with selection on the sum of the 

Table 2 Heritability estimates for average daily gain 
across weeks

Week Direct heritability Indirect heritability Total heritability

1 0.17 (0.03) 0.44 (0.13) 0.19 (0.10)

2 0.24 (0.03) 0.23 (0.07) 0.09 (0.06)

3 0.22 (0.02) 0.18 (0.06) 0.05 (0.04)

4 0.15 (0.02) 0.16 (0.06) 0.06 (0.04)

5 0.08 (0.02) 0.18 (0.11) 0.12 (0.10)

Table 3 Average and range of bias and dispersion of the variance component estimates obtained with a SAD model 
with IGE applied to the simulated longitudinal data

The average and the range is given for each criteria (average over five components for the variance (5 weeks), over 10 (or 25) components for correlations)

CV coefficient of variation, SD standard deviation
a For variance component ω, bias is evaluated by the mean relative bias 

E(ω̂)−ω

ω
∗ 100) and dispersion by the coefficient of variation ( 

std(ω̂)
E(ω̂)

∗ 100) . For correlations 

ω, bias is evaluated by the mean bias ( E
(

ω̂
)

− ω ) and dispersion by the standard deviation
b Percentage of replicates used

Component Criteriona Simulated antagonism between direct and indirect genetic effects

Strong (48%)b Moderate (77%)b Weak (79%)b

Direct genetic variance Relative bias 2 [0–4] 1 [0–2] 2 [1–3]

CV 18 [13–25] 20 [14–30] 20 [14–32]

Direct genetic correlation Bias 0.01 [0–0.03] 0.01 [0.00–0.02] 0.01 [0.00–0.02]

SD 0.07 [0.04–0.11] 0.07 [0.04–0.11] 0.08 [0.04–0.11]

Indirect genetic variance Relative bias 27 [19–43] 19 [11–28] 18 [5–33]

CV 39 [35–48] 52 [47–61] 58 [48–63]

Indirect correlation Bias − 0.03 [− 0.07 to 0.02] − 0.09 [− 0.12 to 0.05] − 0.08 [− 0.12 to 0.07]

SD 0.20 [0.15–0.30] 0.27 [0.22 − 0.35] 0.31 [0.27–0.39]

Direct–indirect correlation Bias 0.04 [− 0.01 to 0.14] 0.00 [− 0.08 to 0.08] 0.00 [− 0.06 to 0.08]

SD 0.13 [0.08–0.25] 0.17 [0.11–0.25] 0.18 [0.09–0.26]

Group variance Relative bias − 4 [− 6 to − 3] − 5 [− 7 to − 2] − 4 [− 7 to 0]

CV 17 [13–24] 17 [13–25] 18 [13–28]

Group correlation Bias 0.00 [− 0.03 to 0.03] 0.00 [− 0.03 to 0.03] 0.00 [− 0.02 to 0.02]

SD 0.06 [0.01–0.12] 0.07 [0.01–0.16] 0.08 [0.01–0.17]
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weekly TEBV obtained with a SAD model with IGE, the 
mean ADG increased for weeks 1, 3, 4 and 5, while no 
changes were observed for week 2. On the other hand, 
with selection on the TEBV of week 1 obtained with a 
SAD model with IGE, there was a high increase in the 
mean ADG for week 1, a clear decrease for weeks 2 and 

3, no changes for week 4, and a moderate increase for 
the last week of observation. When a SAD model with-
out IGE was used to select animals, the pattern was the 
opposite (increases in weeks 2 and 3 and reductions in 
weeks 1 and 5).

Discussion
One of the characteristics of the analysis of longitudinal 
data is the within-subject correlation of the measure-
ments (in addition to between-subject correlations due to 
shared genetic or environmental factors). A large number 
of parameters (100) are necessary to model the covari-
ance structure of our data using an unstructured model 
with the same random effects as described here. Several 
flexible approaches exist to model the covariance struc-
ture of the data with a reduced number of parameters, 
such as random regression (RR), SAD [26], and charac-
ter process (CP) models [16, 27]. Among these, we chose 
the SAD approach for several reasons: (1) it relaxes the 
stationary correlations assumption made in CP models 
[28]; (2) it has been shown to better fit the data com-
pared to the RR model in many situations [16–18, 20]; 
(3) it is less sensitive to the drawbacks reported for the 
RR model, such as border effects [29] and inability to 
properly estimate correlations that decrease rapidly over 
time [16]; and (4) it generally requires fewer parameters 
than the CP model to model covariance structures. The 
SAD approach has been used to perform genetic studies 
of several longitudinal traits, such as repeated measure-
ments of weight, feed intake, reproduction traits [17, 18, 
20]. It has also been used to model residual (co)variances 

Fig. 5 Changes in the mean ADG across generations for each 
selection strategy. SAD–DGE‑selection criterion: sum of the weekly 
direct EBV obtained with a SAD model without IGE; SAD1‑selection 
criterion: sum of the weekly TEBV obtained with a SAD model 
with IGE; SAD2‑selection criterion: TEBV of the first week obtained 
with a SAD model with IGE. Straight line, line with (dot) and line 
with + represent strong, moderate and weak simulated genetic 
antagonism between direct and indirect effects, respectively

Fig. 6 Mean ADG by week in the last generation for each selection strategy and for different sets of simulated genetic antagonism between direct 
and indirect genetic effects. SAD–DGE‑selection criterion: sum of the weekly direct EBVs obtained with a SAD model without IGE; SAD1‑selection 
criterion: sum of the weekly TEBV obtained with a SAD model with IGE; SAD2‑selection criterion: TEBV of the first week obtained with a SAD model 
with IGE
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in models for quantitative trait loci (QTL) detection in 
the framework of functional mapping [30] of longitudinal 
traits in animals [31] and plants [32]. To our knowledge, 
this is the first time that a SAD approach has been used 
in quantitative genetic mixed models to model a trait 
with indirect genetic effects. It should be noted that we 
tried to apply a RR model to these data using the REML 
approach but the estimation procedure never converged.

The mean weekly ADG reported here are consist-
ent with those reported over the whole fattening period 
under a feed restriction of 80% by Drouilhet et  al. [33] 
(40.4  g/d). Because of the limited amount of food, the 
ADG of restricted animals was lower than that of ani-
mals fed ad libitum from the same population of rabbits 
[7]. In addition, there was an effect of feeding restriction 
on the growth pattern, with the deceleration phase and 
the inflexion point of the growth curve being delayed. 
Because animals were raised in collective cages, we 
included indirect genetic effects in the model to account 
for the competition between individuals to access feed. 
In a previous analysis of the same dataset that did not 
consider the longitudinal characteristics of the data, 
Piles et  al. [7] confirmed that indirect genetic effects 
play an important role in ADG under restricted feeding. 
The significance of IGE was also confirmed in our study 
when the longitudinal characteristics of the data were 
accounted for by the likelihood ratio test that compared 
the SAD model with and without IGE. The importance 
of indirect genetic effects on the ADG of group-housed 
animals has also been reported in other species such as 
pigs [34, 35] and in other breeding conditions (e.g. con-
ventional barren vs enriched pens [36]).

Estimating IGE can be challenging [37] because the sta-
tistical power for detecting IGE is determined by the 
group-population structure [38, 39] and there is a risk of 
confounding IGE with environmental (i.e. group) effects, 
leading to non-identifiability of the (co)variance compo-
nents of the social model [40]. Even if the structure of the 
design in our study (small group size, large number of 
groups and 4 * 2 full-sibs per group) meets the require-
ments to detect IGE and a group effect was included in 
the model as a random effect to help identifiability of 
parameters, identifiability of the (co)variance compo-
nents is not guaranteed [40]. Exploring the information 
matrix I

(

ω̂

)

 helps to detect identifiability problems for an 
unknown parameter vector ω [41]. The condition number 
(square root of the ratio of the first to the last eigenvalue) 
of the information matrix I

(

ω̂

)

 of the SAD model used 
here was large (512), which may lead to the occurrence of 
identifiability problems. Nonetheless, the condition num-
ber of the submatrix of I

(

ω̂

)

 that considered only the first 
regression coefficients of the SAD functions for all ran-
dom terms (11  *  11 matrix) was equal to 35, which 

indicates that dependencies of parameter estimates were 
not between parameters of different random effects. In 
fact, close inspection of the correlation matrix among 
parameter estimates (Fig.  7, H

(

ω̂

)

= I
(

ω̂

)−1 ) showed 
that correlation between regression coefficients within 
polynomial functions were high, while correlations 
between SAD parameters related to different random 
effects were low. For instance, the correlations between 
parameter estimates for the genetic effects and those 
related to the group effect were moderately high (ranging 
from −  0.57 to 0.56, and averaging 0.14), which indicates 
that the information provided by the data was sufficient 
to disentangle common environment effects from indi-
rect genetic effects in the SAD model. To better under-
stand the relationship between variance components of 
the random effects obtained with estimates of the SAD 
model, we also computed the correlation between esti-
mates at the level of the (co)variance components using 

Fig. 7 Correlation matrix between parameter estimates. For group, 
litter and permanent random effects (“perm”); parameters are 
presented in the following order: the two regression coefficients 
of the antedependence parameters, then the two regression 
coefficients of the innovation variance. For the genetic effects 
(“gen”), the parameters are presented in the following order: the 
first six parameters correspond to the regression coefficients of 
the antedependence parameters for the direct (first and second 
parameters), indirect (third and fourth parameters) effects, and the 
regression coefficients of the cross‑antedependence parameters 
(fifth and sixth parameters). The four last parameters correspond to 
the regression coefficient for the innovation variance of the direct 
(seventh and eighth parameters) and indirect (ninth and tenth 
parameters) genetic effects. Cell with a (dot) indicates an absolute 
correlation value higher than 0.6
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the 10,000 random samples of ω̃ in ω̃ ∼ N
(

ω̂, H
(

ω̂

))

 . The 
corresponding 100  *  100 matrix is shown in Additional 
file 3. Correlations between (co)variance component esti-
mates of different random effects were generally low. 
Those of the five indirect genetic variances with the five 
group variance estimates were less than 0.27 (in absolute 
value), while those of the 25 direct–indirect genetic 
covariances with the group (co)variance estimates were 
less than 0.18 (in absolute value). Such results favor the 
possibility to separate the variance estimates of the differ-
ent random effects in the model.

The relative importance of the litter effect was mod-
erate, in accordance with previous studies [42, 43]. It 
decreased with time (from 18 to 5% of the total vari-
ance), probably as a consequence of the well-known 
decrease over time of the maternal influence on prog-
eny performance [44, 45]. The relative importance of the 
group effect (approximately 15% of the total variance) 
was in line with previous results in other species (18% 
[35]). Because residuals were assumed to be independ-
ent among the individuals of a given group, the variance 
of the group effect included in the model originates from 
both social interactions between individuals (correlated 
residual effects) and physical differences between pens 
(location in the building for instance) [46]. Accounting 
for the environmental dependence between group mates 
in this manner is possible if, and only if, the covariance 
among residuals of group mates is positive [23]. This con-
dition was verified week by week for this population in 
a previous study (correlation between residuals of group 
mates over weeks were 0.11, 0.17, 0.19, 0.18 for weeks 
1  to  4, respectively) [7]. The slight increase in the rela-
tive importance of the group effect over the study period 
(from 11 to 20% of the total variance) could be related 
with this previously reported slight increase in the weekly 
correlation between residuals of group mates.

We obtained moderate estimates of the direct heritabil-
ity, which is consistent with previous estimates reported 
in the literature for the same species 0.22 [33] and 0.18 
[47]. The decrease in the direct genetic variance, and thus 
in heritability, at week 5 is probably related to the change 
in feed composition that occurred that particular week.

The moderate heritability of indirect genetic effects is 
in line with those reported in previous studies for pigs 
(~ 0.13 [48] and ~ 0.39 [23]). It is interesting to note that 
the indirect genetic effects were higher for week 1, which 
is in accordance with studies on the behavior of animals 
raised in groups that report a higher level of aggressive-
ness at mixing, which reflects the establishment of social 
hierarchy that generally occurs within 3  days after mix-
ing. In the same population as used here, Dalmau et  al. 
[13] observed signs of antagonistic behavior such as bit-
ing, displacement, and animals jumping on top of each 

other over the whole growing period but especially dur-
ing week 1. In mice and pigs, indirect genetic effects are 
known to induce antagonistic behavior at mixing [49, 50]. 
Furthermore, we observed that the genetic correlation of 
the IGE in week 1 with the IGE in other weeks was lower 
than the correlation between IGE in weeks 2, 3, 4, and 5, 
which also indicates that IGE expressed just after mixing 
is a different trait from IGE expressed later in life.

The genetic correlation between direct and indirect 
genetic effects was negative regardless of the week con-
sidered, which indicates that individuals with a positive 
(direct) breeding value for their own growth tend to 
have a negative (indirect) breeding value for the growth 
of their cage mates and vice versa. This is consistent 
with the idea of competition between animals for a fixed 
amount of feed. Nonetheless, although we found no evi-
dence of lack of identifiability for the parameters in our 
analysis, we suspect that the estimates of the genetic cor-
relations between direct and indirect genetic effects are 
higher than their real value. An antagonism probably 
exists between direct and indirect genetic effects but 
not with such a strong negative correlation. The antago-
nism of these two effects has also been reported in pre-
vious studies on restricted feeding. Muir [51] described 
a moderate to high negative (− 0.56) genetic correlation 
between direct and indirect genetic effects on weight at 
6  weeks of age of Japanese quail in groups of 16 birds. 
However, Bergsma et  al. [23] found a neutral relation-
ship between direct and indirect genetic effects for pigs 
in groups of 6 to 12 pen mates of the same sex.

Based on our results, we hypothesize that the growth 
of animals under a restricted feeding regime can be 
improved and that the delay of their growth curve can 
be shortened by reducing the negative impact of indirect 
effects, especially during the first week after mixing. One 
way to do this is to provide an enabling environment that 
decreases indirect effects by limiting the feed restriction 
during the first week after mixing (85 instead of 75% of 
ad  libitum feed intake instead, for instance). Currently, 
this strategy is applied on several rabbits farms (Tudela F., 
personal communication). Another strategy is to perform 
genetic selection to improve the ADG, as investigated 
here by simulation.

For the simulations, unstructured (co)variance matrices 
were used to simulate the data and the SAD model was 
used to estimate variance components for different weeks. 
To obtain convergence of complex SAD models, such as 
those used in this study; the most appropriate method 
involves starting with a simple SAD model (low antede-
pendence orders and low degrees for the polynomial 
functions) and to increase the degree and order step-by-
step by using estimates of the preceding reduced model 
as starting values. For the simulations, we did not use this 
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method (because it required too much computing time) 
and applied the full SAD models right away. This explains 
the lack of convergence of the SAD model for several rep-
licates. However, it should be noted that the percentage of 
replicates that did not converge increased with the degree 
of genetic antagonism between direct and indirect genetic 
effects. This confirms that when one parameter (the 
genetic correlation in our case) is close to the boundary 
of the parameter space, estimation of model parameters 
becomes difficult. Using a larger dataset is one approach 
to overcome this problem [52].

Across the replicates that converged, the bias in esti-
mates of the variance components and the correlations 
between weeks were moderate, which indicates that the 
SAD model was able to estimate the different variance 
components. Nonetheless, it should be noted that the 
indirect genetic variances tended to be overestimated, 
while the group variances were slightly underestimated, 
which confirms the difficulties (but not the impossibility) 
of separating IGE from group effects. Thus, in practice, 
when applying such a complex model, it is highly rec-
ommended to inspect closely the average information 
matrix to determine whether the data structure supports 
the fitted model.

We proposed three selection scenarios. All scenarios 
used the SAD model to compute TEBV and took the lon-
gitudinality of the data and the possibility that ADG cor-
responds to different traits at different time points into 
account. In scenario (1), IGE were not accounted for in 
the SAD model. As expected, applying a model with IGE 
for selection led to a larger increase in ADG than when 
IGE were ignored in the evaluation model [comparison of 
selection strategies (1) and (3)]. The benefit of including 
IGE in the evaluation model by simulation was reported 
previously [53]. The difference between the two selection 
strategies decreased as the genetic antagonism between 
direct and indirect effects decreased and is expected to 
be low in case of cooperation instead of competition 
between animals. In the extreme case of a strong direct–
indirect genetic antagonism, the mean ADG was not 
improved by selection if IGE were not considered in the 
evaluation model.

Based on the five TEBV per animal (5  weeks), dif-
ferent selection indexes can be computed, with differ-
ent weights for each week [selection strategies (2) and 
(3)]. In scenario (2), since the most important negative 
antagonistic behaviors between cage mates occurred 
during the first week after mixing, the weight was 1 
for week 1 and 0 for the other weeks. In scenario (3), 
we considered equal weights for all weeks. Response 
to selection for scenario (2) was as expected: a strong 
increase in ADG for the first week after mixing. How-
ever, this response was associated with a detrimental 

effect on ADG for the two following weeks when data 
were simulated with a strong genetic antagonism 
between direct and indirect genetic effects. Such nega-
tive responses for weeks 2 and 3 were the consequence 
of negative correlations of the TEBV for week 1 with 
those of weeks 2 or 3 (− 0.30 and − 0.07, respectively), 
while the correlation was null with week 4 and slightly 
positive with week 5 (0.05). To avoid this detrimen-
tal correlated response, the selection criterion should 
take all weeks or at least weeks 1 and 2 into account. 
When the genetic antagonism between direct and 
indirect genetic effects was weak to moderate, correla-
tions between TEBV for different weeks were positive 
and the detrimental effects for ADG in weeks 2 and 3 
were not observed. However, using equal weights for 
all weeks in the selection criterion resulted in a higher 
mean ADG over weeks than when the TEBV of only 
the first week was used for selection regardless of the 
importance of the genetic antagonism between direct 
and indirect genetic effects. The selection scenarios (2) 
and (3) reflected two extreme strategies but it would 
be possible to refine the selection index by considering 
other sets of weights for the different weeks. It would 
probably be beneficial to increase the weight for week 
2 to avoid a decrease in ADG by applying selection for 
this particular week in case of a strong genetic antago-
nism between direct and indirect genetic effects, or to 
build a selection index as a combination of the TEBV 
for week 1 and the direct EBV for the other weeks.

Note that the simulations were performed under 
the assumption that there were no genotype-by-envi-
ronment interaction within a week, i.e. the direct and 
indirect genetic effects of an animal were the same 
regardless of the direct and indirect genetic effects of 
its group mates. This assumption may be questionable.

Conclusions
Using a SAD model, we showed that IGE that act on 
ADG vary over time and that IGE are more important 
during the first week after mixing. Combining TEBV 
obtained from a SAD model that includes IGE in a 
selection index is the most effective strategy to improve 
longitudinal ADG when IGE occur.
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