
Structured antedependence model for longitudinal analysis of social effects on ADG in rabbits

I. David, J.P. Sánchez, M. Piles

Backgroung

- For animal welfare, group housing is recommended in many species
 - Social genetic effects (SGE) may affect phenotypes of interest

Phenotype_i=direct effects_i+ $\sum_{j=1}^{3}$ indirect effects_i

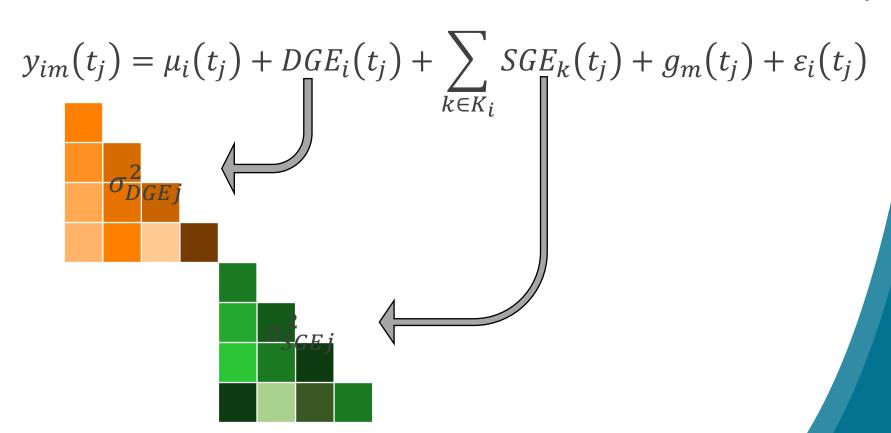
- SGE may vary over time
 - In group housing conditions, aggressive behavior is generally stronger at mixing and tends to decrease with time
- Few genetic studies have investigated the changes of SGE over time for traits under selection in livestock species.

Goal

- Propose an appropriate model to evaluate changes of SGE (and DGE) over time
- Apply this model to study longitudinal ADG in rabbits

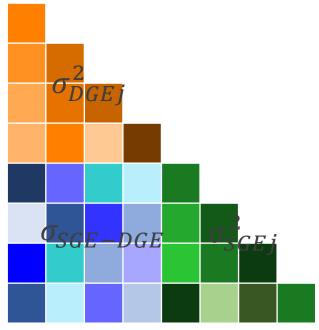
Evaluate if it is necessary to account for that phenomenon for selection.

The model


For animal i, in group m with co-mate ϵ K_i at time t_i

$$y_{im}(t_j) = \mu_i(t_j) + DGE_i(t_j) + \sum_{k \in K_i} SGE_k(t_j) + g_m(t_j) + \varepsilon_i(t_j)$$

The problem


For animal i, in group m with co-mate ϵ K_i at time t_j

The problem

For animal *i*, in group *m* with co-mate ε K_i at time t_j

$$y_{im}(t_j) = \mu_i(t_j) + DGE_i(t_j) + \sum_{k \in K_i} SGE_k(t_j) + g_m(t_j) + \varepsilon_i(t_j)$$

For n time-points

$$\rightarrow \frac{2n(2n+1)}{2}$$
 genetic parameters

 $\rightarrow \frac{n(n+1)}{2}$ parameters other random effects

Large number of parameters

The problem

For animal *i*, in group *m* with co-mate ε K_i at time t_j

$$y_{im}(t_j) = \mu_i(t_j) + DGE_i(t_j) + \sum_{k \in K_i} SGE_k(t_j) + g_m(t_j) + \varepsilon_i(t_j)$$

► US → too many parameters

- Character process
- Random regression

The problem

For animal *i*, in group *m* with co-mate ε K_i at time t_j

$$y_{im}(t_j) = \mu_i(t_j) + DGE_i(t_j) + \sum_{k \in K_i} SGE_k(t_j) + g_m(t_j) + \varepsilon_i(t_j)$$

► US → too many parameters

- Character process
- Random regression
- Structured antedependence model

Structured antedependence model

model an observation at time t by regression on the preceding observations.

$$g_i(t_j) = \sum_{s=1}^{\alpha} \theta_{s,j} g_i(t_{j-s}) + e_{g,i}(t_j)$$

$$\theta_{s,j} = a_s + b_s t_j + \cdots$$

$$e_{g,i}(w_j) \sim N(0, \sigma_j^2)$$

$$\sigma_j^2 = \exp(a + bt_j + \cdots)$$

- OWN fortran program for ASReml
- Selection order antedependence and degree polynomial function using LRT

Structured antedependence model

model an observation at time t by regression on the preceding observations.

$$g_{i}(w_{j}) = \sum_{s=1}^{\alpha} \theta_{s,j} g_{i}(w_{j-s}) + e_{g,i}(w_{j})$$

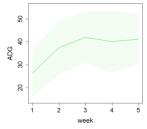
$$g_{i}(w_{j}) = \sum_{s=1}^{\alpha} \theta_{s,j} g_{i}(w_{j-s}) + e_{g,i}(w_{j})$$

$$g_{i}(w_{j}) = \sum_{s=1}^{\alpha} \theta'_{s,j} SGE_{i}(w_{j-s}) + e_{g,i}(w_{j})$$

$$g_{i}(w_{j}) \sim N(0, \sigma_{j}^{2})$$

$$\sigma_{j}^{2} = \exp(\alpha + bt + \cdots)$$

$$SGE_{i}(w_{j}) = \sum_{s=1}^{\alpha} \theta'_{s,j} SGE_{i}(w_{j-s}) + e_{SGE,i}(w_{j})$$

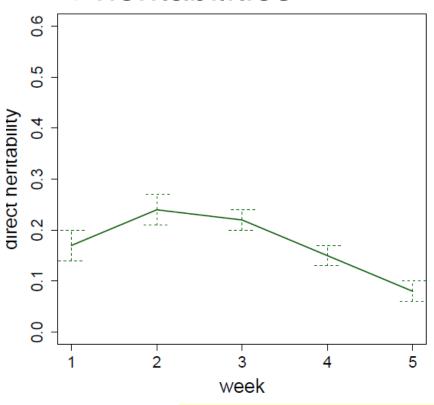

$$DGE_{i}(w_{j}) = \sum_{s=1}^{\alpha} \theta_{s,j} DGE_{i}(w_{j-s}) + \delta_{j} SGE_{i}(w_{j}) + e_{DGE,i}(w_{j})$$

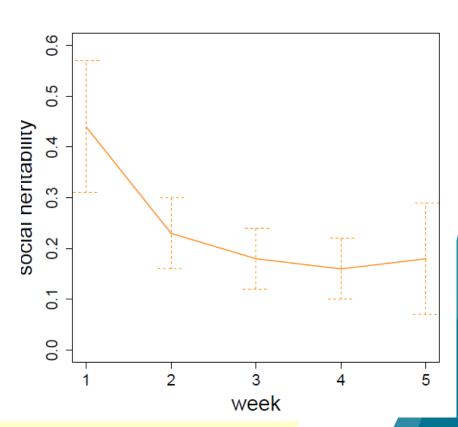
extension of the SAD approach to the correlated-effects case is straightforward

Evaluate changes of SGE (and DGE) over time for ADG in rabbit **Data application**

- IRTA experiment
 - 3,096 , pen of 8, restricted feeding (75%)
 - weighed at weekly intervals over a 5-week period
 - 5 ADG/ animal

$$ADG_{ilm}(t_j) = \mu_i(t_j) + DGE_i(t_j) + \sum_{k \in K_i} SGE_k(t_j) + g_m(t_j) + l_l(t_j) + \varepsilon_i(t_j)$$

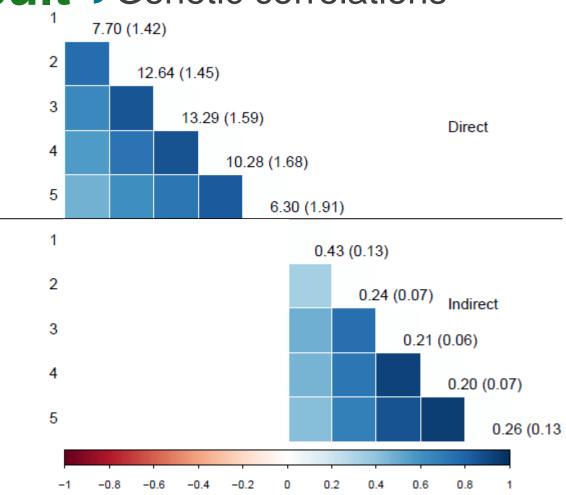

■ SAD: 22 parameters instead of 100



Evaluate changes of SGE (and DGE) over time for ADG in rabbit

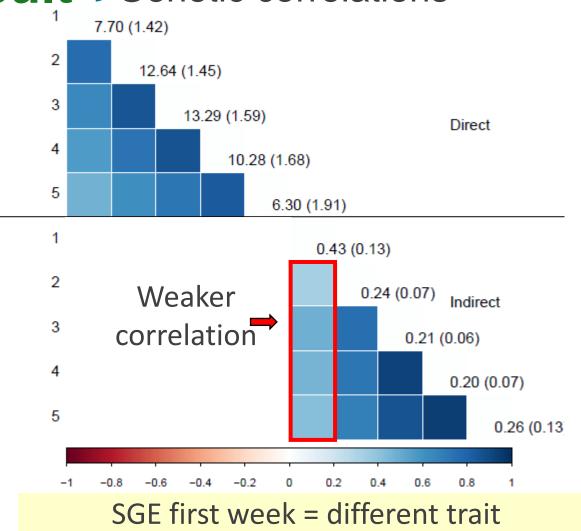
Result

heritabilities


First week: higher social h²

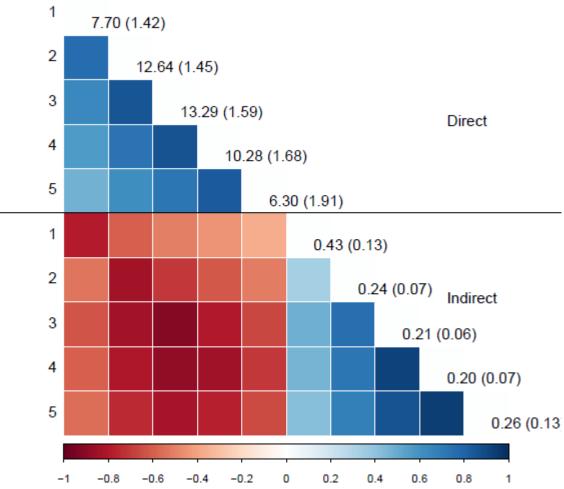
Evaluate changes of SGE (and DGE) over time for ADG in rabbit

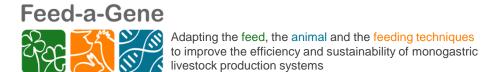
Result Genetic correlations



Evaluate changes of SGE (and DGE) over time for ADG in rabbit

Result Genetic correlations





Evaluate changes of SGE (and DGE) over time for ADG in rabbit

Result Genetic correlations

Genetic antagonism between direct and social genetic effects

Evaluate changes of SGE (and DGE) over time for ADG in rabbits In summary

- Genetic variances vary over time
- SGE first week is a different trait than SGE of the following weeks
- There is a genetic antagonism between direct and social genetic effects

General conclusion

This study confirms the hypothesis of changes of SGE over time

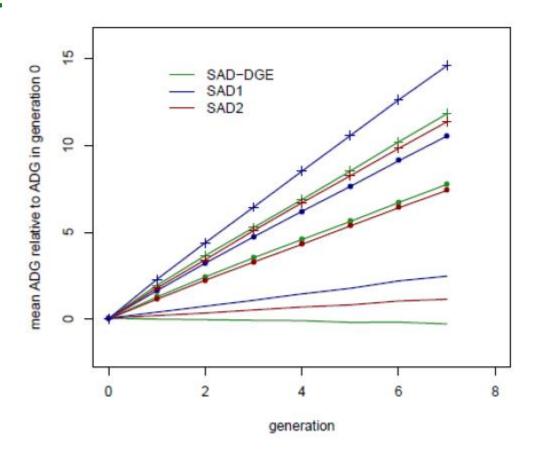
- SAD model was appropriate to model these changes
 - SAD programs for correlated random effects are freely available on zenodo https://zenodo.org/record/1228058

Feed-a-Gene

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

account for ΔSGE for selection.

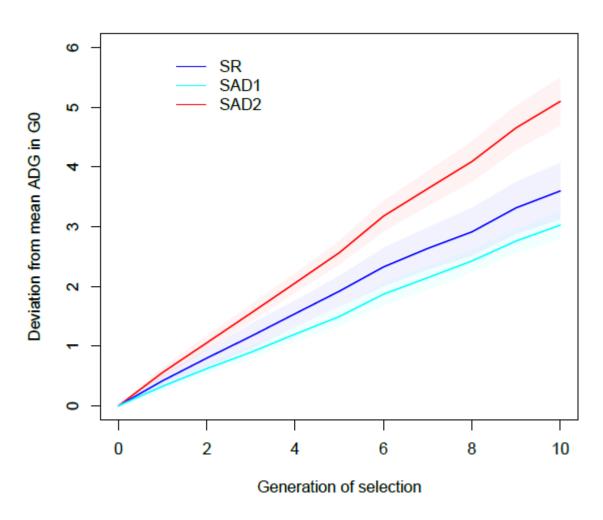
Method


- Simulation study
 - Same design as the experiment
 - SGE, DGE simulated using an unstructured covariance matrix (strong, moderate and weak genetic antagonism)
 - 7 generations of selection
 - Criterion 1: EBV* from a SAD model without SGE
 - Criterion 2: TBV* of the first week (SAD model)
 - ▶ Criterion 3: sum of the weekly TBV* (SAD model)

*TBV=EBVd+7*EBVs

account for ΔSGE for selection.

Result



Straight line, line with • and line with + represent strong, moderate and weak simulated genetic antagonism between direct and indirect effects, respectively.

account for $\triangle IGE$ for selection.

Result

account for $\triangle IGE$ for selection.

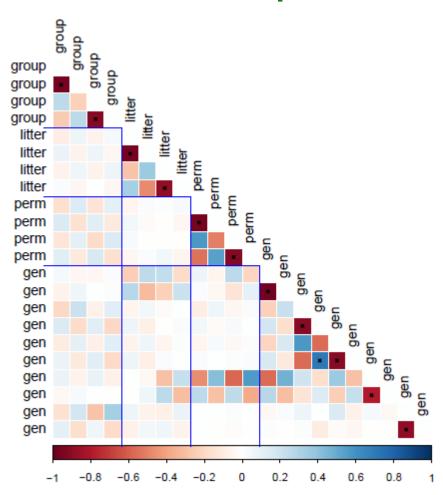

Conclusion

Selection is more efficient when changes of SGE over time are taken into account

account for $\triangle IGE$ for selection.

Result

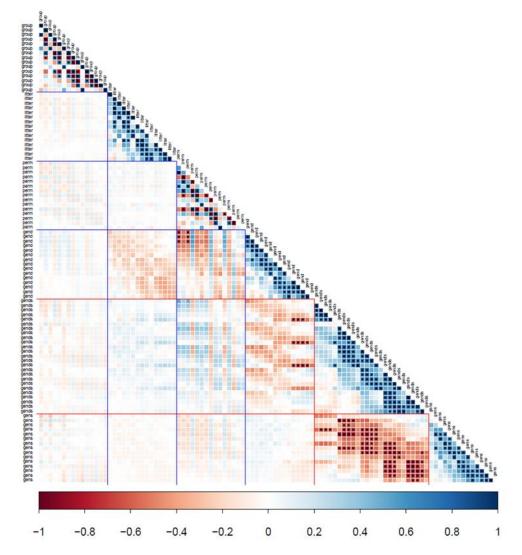
$$\mathbf{y}(t) = \mu(t) + \mathbf{u}(t) + \mathbf{p}(t)$$


$$\begin{aligned}
\boldsymbol{p}(t_0) &= \boldsymbol{e}(t_0) \\
\boldsymbol{p}(t_j) &= \sum_{k=1}^{s} \boldsymbol{\theta}_{kj} \boldsymbol{p}(t_{j-k}) + \boldsymbol{e}(t_j) \\
\boldsymbol{e}(t_j) &\sim N(0, \sigma_{ej}^2), \sigma_{ej}^2 = \exp(a + bt + ct^2 + ...) \\
\boldsymbol{\theta}_{jk} &= a' + b't + ...
\end{aligned}$$

SAD ordre-degré dep, degré variance Ex: SAD 1-00, SAD2-101

Identifiability

Correlation matrix between parameters estimates



Identifiability

Correlation matrix between variance component

estimates

