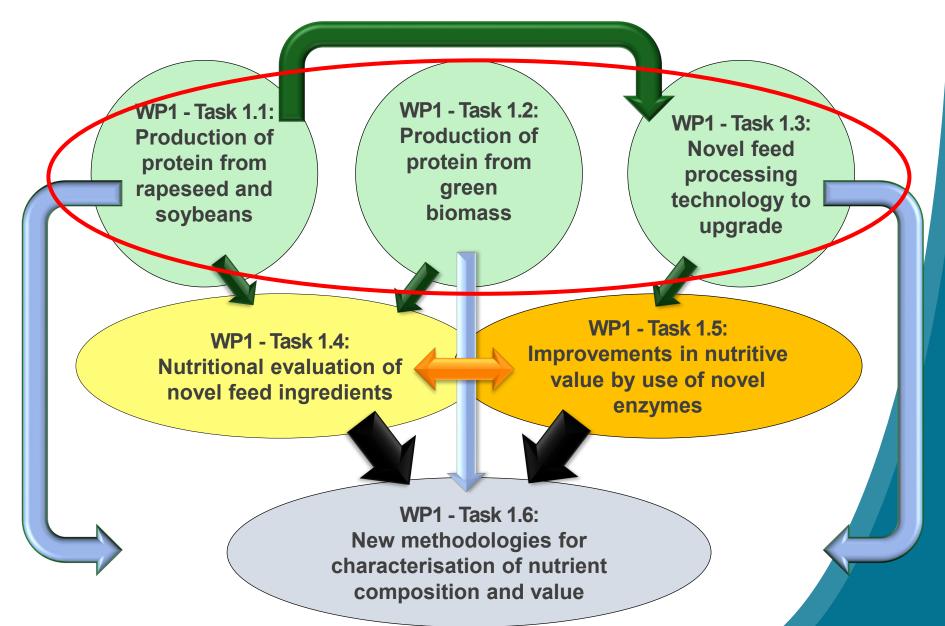
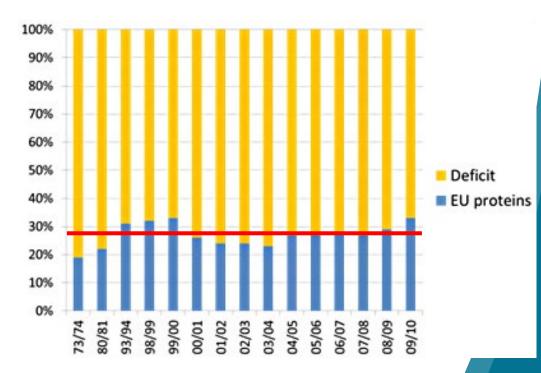
Alternative feed ingredients and technologies for improved nutritive value of feed

Knud Erik Bach Knudsen
Aarhus University


Points to be addressed

- Overview of activities in WP1 of Feed-a-Gene
- Alternative feed ingredients from:
 - European grown soybeans
 - Rape seed meal
 - Green biomass
- Technologies
 - Modified separation techniques for European grown soybeans
 - Tail-end separation of rapeseed meal by physical meals
 - "Cracking" of green biomass

Overview of WP1 task activities



Background

- Europe has a chronic protein deficit; approximately 70% of all protein is imported
- Rapeseed, sunflower and soybeans are the three main protein crops in Europe with annual productions of 22.6, 9.1 and 2.5 mill tons; production of peas and beans are 2.1-2.4 mill tons (2017/18)

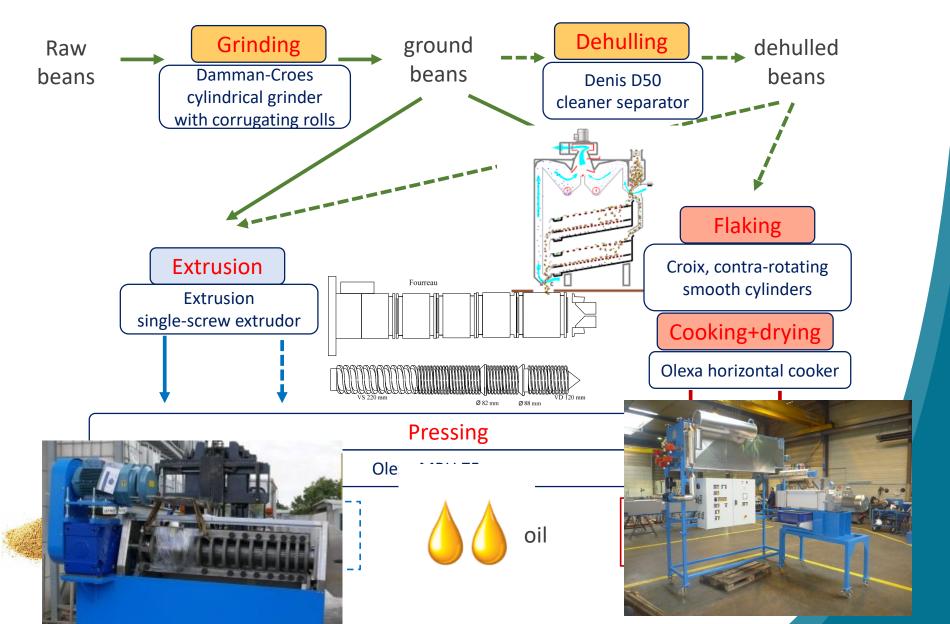
Evolution of EU protein deficit (1973-2010)

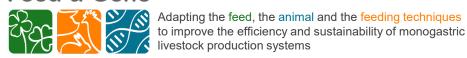
Source : Unip

Technology - Extrusion-pressing or flakingpressing-cooking of European grown soybeans

- Medium-sized crushing plants for local and GMO-free soybean crops ⇒ interesting nutritional and economic values in Europe
- Study:
 - Effects of process factors (preparation, temperature) to get 4 separate products
- Methods:
 - 2 x 2 factorial design
 - Extrusion-pressing (EP) vs. flaking-pressing-cooking (FPC)
 - Dehulled or not before processing
- Variations of flow rate/speed + specific mechanical energy

Feed-a-Gene





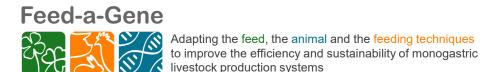
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Soymeal experimental products

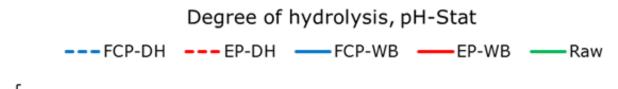
Study results	Dry Matter	Oil	Proteins		Protein solubility	Dietary Fiber	Trypsin inhibitors
Study results	% on c	rude weight basis		% de- oiled DM	% on crude		TIU / mg
Raw soybean	87	18	38	55.7	95	17.3	25
FCP-whole beans	91	8	47	55.8	82	21.1	3.6
EP-whole beans	94	5	50	56.0	70	21.1	2.6
FCP-dehulled	92	6	51	58.4	89	17.5	7.6
EP-dehulled	94	5	52	58.8	76	16.4	3.5

EP vs **FCP** impact

Dehulling impact

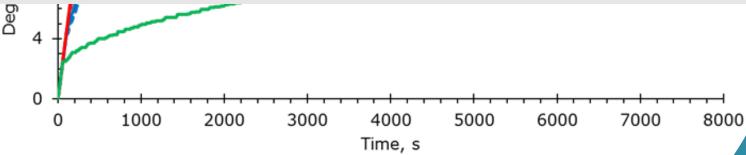

-3.2	+ 3.6	+ 0.2
-1.1	+ 1.8	+ 0.3

-1.9	+ 3.9	+ 2.7
+ 0.2	+ 2.2	+ 2.8


whole beans dehulled beans

with FCP process with EP process

09/01/2019



In vitro digestion kinetics - pH-stat method

20 1							
	Soybean raw	FCP-DH	EP-DH	FCP-WB	EP-WB	SEM	P treatment
Rate k (×10 ⁻⁶)	46.1 ^a	80.0 ^b	82.0 ^b	87.1 ^b	115.9°	0.290	< 0.001
DH max.	12.4 ^a	19.1 ^b	21.5 ^d	20.3 ^c	19.9 ^{bc}	0.319	< 0.001

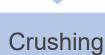
FCP-DH = flaking-cooking process of dehulled beans; EP-DH = extrusion process of dehulled beans; FCP-WB = flaking-cooking process of whole beans; EP-WB = extrusion process of whole beans

09/01/2019

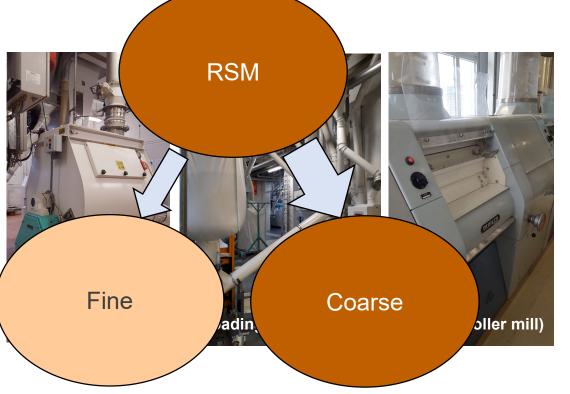
Effect of dietary treatments on SID of amino acids and growth in piglets

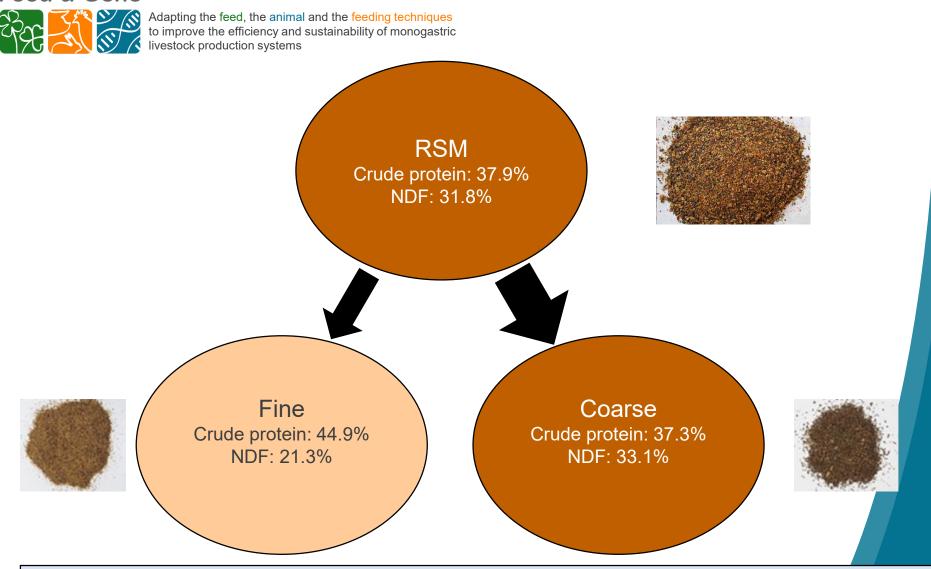
	Conv. SBM	FCP-DH	EP-DH	FCP-WB	EP-WB			P-value	
						SEM	Trt	R	Trt x R
Lys	.847 ^b	.819 ^b	.990ª	.965ª	.946ª	.043	.0001	.015	.0001
Met	.848 ^b	.872 ^b	1.00a	.994ª	.985ª	.039	.0001	.375	.0001
Thr	.870 ^{cd}	.831 ^d	1.00 ^{ab}	.982ab	.936 ^{bc}	.055	.0001	.010	.0001
Leu	.843 ^b	.743c	.990ª	.953a	.942a	.046	.0001	.0001	.0001
lle	.826 ^b	.749b	.997ª	.954a	.938a	.054	.0001	.255	.0001
His	.908c	.799 ^d	.996 ^{ab}	.957 ^{abc}	.937 ^{bc}	.047	.0001	.0001	.129
Val	.820c	.754c	.983 ^{ab}	.947 ^{ab}	.934b	.049	.0001	.011	.0001
Arg	.929 ^c	.835 ^d	1.008ab	.982 ^{bc}	.980 ^{bc}	.040	.0001	.025	.007
ADG, g/d	621 ^a	322 ^b	615ª	572a	608ª	95.7	.0001	.022	.978
ADFI, g/d	1032ª	894 ^{ab}	879 ^{ab}	944a	949ª	126.6	.0001	0.658	.0004
FCR, kg/kg	1.67ª	2.96 ^b	1.45ª	1.66ª	1.56ª	.840	.0001	.786	.422

FCP-DH = flaking-cooking process of dehulled beans; EP-DH = extrusion process of dehulled beans; FCP-WB = flaking-cooking process of whole beans; EP-WB = extrusion process of whole beans

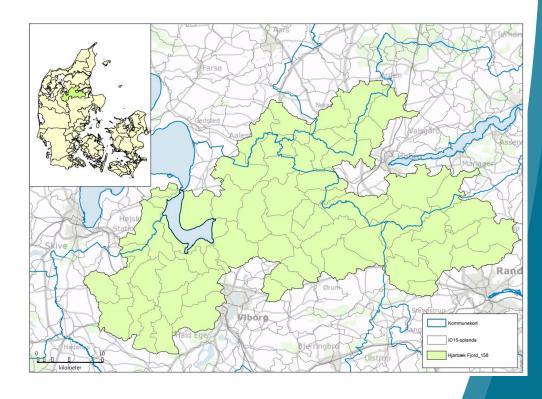

Rape seeds

- Rape seeds are the most important protein crop in Europe
- The digestibility of nutrients (energy, protein and amino acids) in RSM is lower than in SBM primarily because the hull layer contain very lignified cell walls
- Additionally, a relatively high proportion (~17%) of the protein and amino acids is associated to the hull layer


Novel feed processing technology to upgrade


Sifting

Feed-a-Gene



The fine fraction is currently under nutritional evaluation in pigs

Protein from green biomass

- Interest in Denmark related to environmental issues as cash crops (i.e. cereals) may cause high leakage of nitrogen to creaks, lakes and inlets
- Related to sustainable intensification

Potential protein production

Type of crop	Kg protein per ha	Challenges
Wheat	~ 1000	
Soya beans	~ 1000	
Clover grass, temperate	~ 1500	Concentration
Red clover, temperate	~ 2500	+ ANF
Moringa oleifera, tropical (as crop)	~ 5000	+ ANF
Non-edible plants/crops	~ 5000+	+ Detoxification
Micro algea	~ >>>>	+ Technology

Protein from green biomass

Demonstration plant

Tons scale

Pilot plant

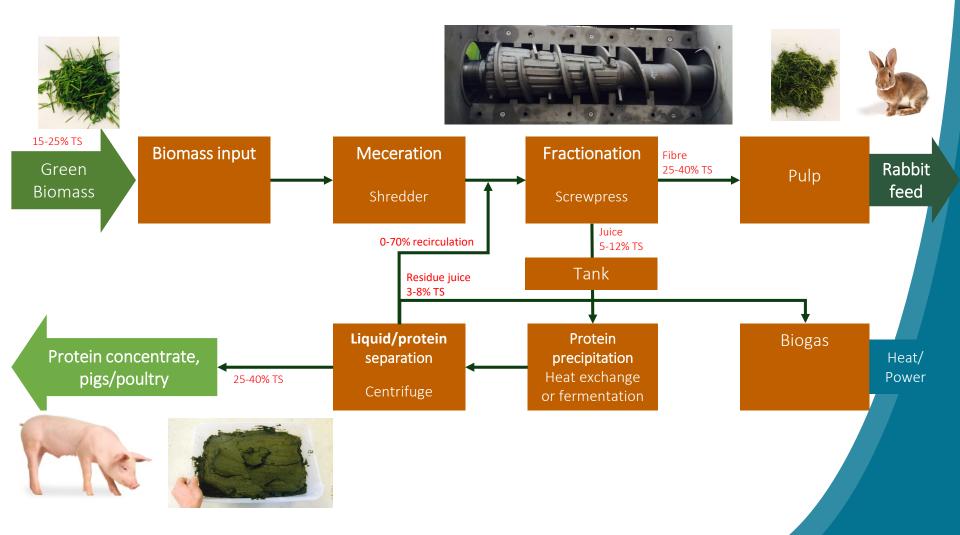
Kilo gram scale

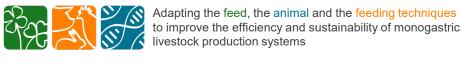
Lab scale extraction

Gram scale

Plant production

Background


- Protein concentrate from green biomass could be an attractive alternative protein source for monogastric farm animals
- Laboratory studies have shown promising results when evaluated in a rat model



Processing of green biomass – Feed-a-Gene

Summary of studies with protein from green biomass to pigs

- Studies performed so far (year 2016-17) with ileal cannulated pigs have shown inferior SID of protein and amino acids in protein from green biomass compared to SBM, e.g SID of lysine in the range 69-72% in green protein concentrate compared to 84% in SBM
- A problem has been a high concentration of ash (15-30% of DM) resulting in a relatively low concentration (33-38% of DM) of protein
- However, improvements in harvest and protein precipitation techniques have increased the protein content of 2018 harvest to 49-54% of DM. The influence of that on the digestibility of nutrients have not been studied yet

Summary

- Development of technologies for processing of European grown soybeans in medium sized crushing plants
 - Similar nutritive value as conventional processed SBM
- Tail-end processing of RSM
 - Enabling concentration of high quality protein
- Cracking of green biomass
 - Potential new protein source for monogastric animals

Thank you very much for your attention!

