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Summary 

 

Socially affected traits must be recorded in group-housed animals. In these conditions 

sometimes it is not possible to obtain individual records of certain traits and in some species. 

Previous studies have addressed the issue on how to use group (i.e. pooled) data to estimate 

genetic parameters and to predict breeding values, but the value of this pooled data to conduct 

QTL mapping studies has not been assessed yet. . Our objective was to present a method, 

based on a Bayesian single step genomic evaluation, in which the SNPs effects were assumed 

to follow the prior of Bayesian Cπ model, allowing thus a variable selection approach to 

pinpointing the genome regions most likely harbouring QTLs. The method was applied to a 

multi-trait simulated data set, in which for one of the traits pooled records were generated 

summing groups of 10 individual records. Our results show that an important loss of power 

was observed when pooled data were used, but even though one of the true QTLs can be 

detected with a probability of being associated to the trait of 0.83. This QTL was associated to 

a mutation explaining 16% of the genetic variance and with a frequency of 0.46. Other 

mutation with an even greater effect (22%) but with lower frequency (0.38) could not be 

detected. It can be concluded that although the proposed model can be used for QTL mapping 

when grouped data are available its power is limited and only strongly associated regions are 

likely to be declared as QTLs. 
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Introduction  
 

The single step approach (Aguilar et al., 2010) for implementing genomic selection offers a 

excellent framework to properly consider complex models accounting for data from either 

genotyped or non-genotyped animals, without the need of defining pseudo-records that could 

lack accuracy or might introduce biases because of uncertainty associated to them is not 

properly defined. Examples of these models could be multi-trait, maternal or random 

regression models. Wang et al. (2012) proposed a method to retrieve SNP effects from single 

step approaches, integrating phenotypes from genotyped and non-genotyped individuals. 

They showed how higher prediction accuracy can be achieved by considering functions of the 

SNP effects to differential weight regions in the genome. Their implementation was done 

based on punctual predictions of genomic breeding values, so it does not account for the 

uncertainty of the genomic predictions, and also did not provide a measurement of the 

uncertainty of the estimated SNP effects. The Bayesian MCMC setting provides a scenario to 

characterize marginal posterior distributions of SNP effects or function of them, accounting 

for the uncertainty of the genomic breeding values predictions. 
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 Sometimes recording data at group level is the best option. For example, in socially 

affected traits, it is necessary to keep animals housed in groups for these effects to be 

expressed. In those conditions, it is not possible to get individual records for some traits and 

species such as feed intake in rabbit or egg production in layers. 

The study of a trait recorded at group level can be done using models in which the 

observation is explained by a function of the breeding values of the animals forming the 

group. This kind of models has been shown to be useful for the study of different traits in 

layers (Biscarini et al., 2008), pigs (Sánchez et al., 2014), or rabbits (Sánchez et al., 2016). 

Obviously the accuracy of the predictions from these pooled data would be much lower than 

when records are taken at individual level, but the consideration of other correlated traits in a 

multivariate scenario would improve the accuracy of the genetic predictions (Sánchez et al., 

2014). 

The objective of the present study was to explore the potential of models used to fit 

pooled data to directly explore the existence of genomic regions associated to some trait when 

only pooled records of this trait are available. To do this we extended a Gibbs Sampler 

implementation for conducting single step genomic evaluations.  

 

Material and methods 

 

Data  

 

The simulated data set generated for the 16th European Workshop on QTL Mapping and 

Marker Assisted Selection was used (Usai et al., 2012).It has genotypic and phenotypic 

information corresponding to 3 generations, involving a total of 3000 records from 1000 

females. Twenty males per generation and 20 founders only had genotypes. In the present 

study only the first (T1) and the third (T3) traits were analysed. Heritabilities were 0.35 and 

0.5 for T1 and T3, respectively, and both residual and genetic correlations were -0.45. In the 

simulated data set 50 QTLs were defined, but only 13 were detectable for T1 and T3, being 6 

of them common to both traits. Further details of the data set and the simulation process can 

be found in the paper by Usai et al. (2012). 

 In a first analysis individual records of T3 were used. In a second analysis, 10 

consecutive records were pooled (i.e. added up) to define a group performance record. 

The original SNP panel was formed by 10000 SNPs, evenly distributed every 50Kb along 5 

chromosomes. After quality control 9010 SNPs were retained for latter analyses. 

 

Statistical Models 

 

Two bivariate models were implemented. In the first one the following univariate model was 

fitted to both T1 and T3. 

 

𝐲t = 𝟏μt + 𝐙𝐮t + 𝐞t          (1) 
 

where μt is an overall mean, 𝐮t is a vector with the genomic breeding values of the trait t,  𝐙 

is a design matrix relating breeding values to observations and 𝐞t is a vector of residuals. 

The conditional likelihood of the data was assumed to follow a normal distribution with 

mean (𝟏μ1 + 𝐙𝐮1, 𝟏μ2 + 𝐙𝐮2)′ and variance (𝐫𝟎 ⊗ 𝐈), where 𝐫𝟎 is 2 x 2 matrix containing the 

residual (co)variances.  Flat prior distributions were assumed for μ1 and 𝐫𝟎. The prior 



distribution of the genomic breeding value was the usual multivariate normal distribution 

under a single step approach (Aguilar et al., 2010),  

 

p(𝐮|𝐇, 𝐠0) = MVN(𝟎, 𝐠0 ⊗ 𝐇)        (2) 
 

where 𝐇 is a matrix containing either genomic or pedigree relationships depending on 

whether a particular animal was genotyped or not (Aguilar et al., 2010). In this study, all 

animals in the pedigree were genotyped so H matrix was fully defined as the G matrix 

described in Vanraden et al. (2008), which is the one used by default in blupf90 family 

programs. Thus a GBLUP scenario was actually defined. An uniform prior distribution was 

assumed for elements of 𝐠0, genomic (co)variances.  

In a second hierarchical level, parameters for 𝐮t were defined according to the 

following model: 

 

𝐮t = 𝐌𝐚t + 𝛆t          (3) 
 

at this level the conditional distribution of the genomic breeding values was defined as a 

multivariate normal density with vector of means 𝐌𝐚t and covariance matrix (Iσεt
2 ). Where 𝐌 

is the matrix of standardized genotypes (the one used for obtaining G), 𝐚t is a vector of SNP 

additive effects, and σεt
2   is the residual variance at this level. 

The adopted prior distribution for 𝐚t was that of Bayes  Cπ (Habier et al., 2011), 

assuming with probability π that the SNP effect is zero, and with probability (1 − π) that its 

effect come from a normal distribution with variance following a priori an inverted Chi-

square distribution. A normal density was adopted as prior for the residual distribution in this 

second level of hierarchy, and an inverted Chi-square distribution as prior density for its 

variance (σεt
2 ).  was assumed to be known and equal to 0.995. Genomic breeding values 

were assumed to be independent across traits, thus the residual covariance matrix between 

traits could be defined as 𝐫𝛆, a diagonal matrix containing σε1
2  and σε2

2 . 

In the second analysis, T3 was considered to be the sum of 10 consecutive individual 

records. In this case, the model was defined as before except for the first stage, which was 

defined as:  
 

𝐲1 = 𝟏μ1 + 𝐙𝐮1 + 𝐙𝐝1 + 𝐞1
∗          (4) 

𝐲3
∗ = 𝟏μ3

∗ + 𝐙g𝐮3
∗ + 𝐙g𝐝3 + 𝐞3

∗          

 

where 𝐲3
∗ represents the mean of 10 measurements, 𝐝 would be a vector of dummy effects, 

specific for each animal and assumed to be normally distributed and independent between 

animals within a trait, but correlated across traits. This effect is actually part of the residual, 

and it is considered just to take into account the residual correlation between traits, because in 

this second analysis actual residuals, 𝐞1
∗  and 𝐞3

∗ , has to be assumed to be independent. The rest 

of component of the models, as well as the prior assumption and the structure of the second 

hierarchical level is the same as that described for the first analysis. 

In both analyses windows of 5 consecutive SNPs (200 Kb) were defined and for each 

one of these segments the window posterior probability of association (WPPA) was 

computed, this was defined as in Fernando et al., (2014) i.e. computing the number of MCMC 

rounds in which at least 1 SNP in that particular window had non null effect in and them 

dividing by the total number of runs. 



In the two analyses 0.5 million gibbs sampler rounds were obtained, discarding the first 

100,000 as burning period. 

 

Results and discussion 

 

Figures 1 and 2 shows the Manhattan plots obtained for the WPPA when the two traits were 

recorded at individual level, or when one of the traits was recorded as the sum of 10 

consecutive individual records. When the analysis was conducted using individual records, 2 

and 7 QTLs were respectively declared for T1 and T3, respectively. In the analysis using 

pooled records of T3 3 QTLs were declared for T1 while only 1 for T3.  

A window was declared to be associated to the trait when its WPPA was higher than 

0.75. We chose this threshold because 0.75 seems a reasonable minimum value to interpret 

results as likely associated, being these results the base for further analyses and experiments 

focusing in that particular region of the genome. In addition, Fernando et al., (2014) showed 

that for values of WPPA greater than 0.7, a good agreement with WPPQ (actual frequency of 

association) was observed as far as the region actually harbouring the mutation included 

flanking windows of twice the length of the focus windows. This could be interpreted as a 

measurement of the length of the uncertainty region around an associated window, i.e. the 

uncertainty region would be twice as large as the focus window at both sides of this. 

 

 
Figure 1.- Manhattan plot based on WPPA (200Kb Windows Posterior Probability of 

Association) obtained with Trait 3 defined as individual data. Vertical bars represent the 

position of QTLs declared to be detectable; points at zero WPPA represent no detectable 

QTLs. 

 



 
Figure 2.- Manhattan plot based on WPPA (200Kb Windows Posterior Probability of 

Association) obtained with Trait 3 defined as pooled data. Vertical bars represent the position 

of QTLs declared to be detectable; points at zero WPPA represent no detectable QTLs. 

 

 

Table 1 shows the windows declared to be QTLs regions, as well as their closest actual 

mutation. In the analysis of individual records, 3 out 9 declared QTLs, actually contained the 

simulated mutation.  For the other 6 the distance to the actual mutation from the closest bound 

of the window was always lower that 1Mb and in 3 cases this distance was only 25 Kb. Given 

that the focus windows are 200-300 Kb length (some SNPs were removed during quality 

control), the uncertain region would cover up to 500 Kb on each side of a focus window. 

Thus, only in the worst case, the actual mutation being 875 Kb apart from the window 

bounds, it can be said that the uncertainty region of this QTL does not include the actual 

mutation. 

In general, results based on individual records can be said to be similar, in terms of 

detection capability, to the average performance of all the methods presented in the 

conference for which the dataset was generated (Usai et al., 2012). For T3 we were able to 

detect mutations with an effect as low as 2.57% genetic variance, although others with larger 

effect could not been detected. For T1 (with a lower heritability) the detection capability was 

lower, and the lowest detected effect was 7.6% genetic variance, but similarly to T3, other 

mutations with larger effect were not detected. One important feature of the approach 

presented here is that a nearly null false discovery rate was actually observed. The only 

detected signal that could be said to be a false positive it was less than 1 Mb apart from the 

actual mutation.  

When T3 was analysed as pooled data, the power of detection drastically drops. 

Nevertheless, even in these conditions 1 QTL region was declared with a WPPA equal to 0.83 

(Table 1). The mutation associated to this region was not included within the 200 Kb window 

declared as associated, but it was 25 Kb apart from the lower bound of the window. For this 

particular region the same occurred when data were analysed as individual records. This 

mutation was the second strongest mutation for T3, explaining 16.21 % genetic variance and 



with a frequency of 0.46. The strongest mutation explained 22% of the genetic variance but its 

frequency was a bit lower (0.38). 

 

Table 1.- Declared QTL regions, and position and effects of the actual mutations. 

Includes results for the analysis when both traits were individual records, and those 

obtained when T3 data corresponded to pooled records.  

MUTATION LOCATION AND EFFECT 

 

DECLARED QTLs 

CHR TRAIT Location(Mb) Freq Effect1 

 

W. ini. 

(Mb) 2 

W. fin. 

(Mb) 2 WPPA2 

Min. D. from 

W. (Kb) 2 

T1 Individual records - T3  Individual records 

1 1 84.025 0.46 7.61 

 

84.05 84.25 1.00 25 

4 1 24.925 0.47 26.66 

 

24.70 24.90 1.00 225 

1 3 14.625 0.52 3.84 

 

14.65 14.85 0.82 25 

1 3 58.825 0.38 22.00 

 

357.95 58.5 0.99 875 

1 3 84.025 0.46 16.21 

 

84.05 84.25 1.00 25 

2 3 79.175 0.74 15.42 

 

78.95 79.25 1.00 WITHIN 

3 3 2.175 0.24 6.49 

 

2.00 2.20 1.00 WITHIN 

3 3 36.825 0.73 13.52 

 

36.75 36.95 1.00 WITHIN 

4 3 85.525 0.71 2.57 

 

85.25 85.50 0.85 275 

T1 Individual records - T3 pooled records 

1 1 14.625 0.52 8.69 

 

14.45 14.70 0.75 WITHIN 

1 1 84.025 0.46 7.61 

 

84.05 84.25 1.00 25 

4 1 24.925 0.47 26.66 

 

24.75 24.95 1.00 WITHIN 

1 3 84.025 0.46 16.21 

 

84.05 84.25 0.83 25 
1 % mutation additive variance with respect to total additive variance  
2 W. ini.= Window initial bound; W. fin.= Window final bound; WPPA= Window Posterior Probability of 

Association; Min. D. from W.= Minimal distance from window bounds to the mutation position.  
3 Defined after merging two consecutives windows having both a WPPA of nearly 1. 

 

In the proposed model, genomic breeding values are described by two different 

conditional densities p(𝐮|𝐇, 𝐠0)~MNV(𝟎, 𝐠0 ⊗ 𝐇) and p(𝐮|𝐌, 𝐚, 𝐫𝛆)~MNV (
𝐌𝐚𝟏

𝐌𝐚𝟑
, 𝐫𝛆 ⊗ 𝐈). 

For these two being compatible it has to be shown that after integrating with respect to the 

prior distributions of their respective parameters, the same marginal distributions would be 

kept. In the first case the marginal will be a multivariate student’s t distribution (Sorensen & 

Gianola, 2002). In the second, the integration with respect to 𝐫𝛆 yield also a multivariate 

student’s t, while the integration of this with respect to a mixture of multivariate student’s t 

distribution (marginal prior of 𝐚 in Bayes Cπ) (Habier et al., 2011) will also result in a 

multivariate student’s t density. So, both conditional distributions of the genomic breeding 

values effects result in the same marginal, but hyper-parameters for both marginal has to be 

granted to be the same. In our case this is not the case because in the second hierarchical level 

genomic breeding values are assumed to be independent across traits, while in the first they 

are assumed to be correlated. Future work will explore the effect of this model incongruence. 

 

Conclusions 
 

The proposed multiple regression model for implementing genome-wise association studies 

performed satisfactory in terms of power of detection and control of false discoveries, i.e. 



within the range of other proposed approaches considering individual records. An important 

power loose was observed when the model was applied to pooled data, but even in this 

situation one of the strongest mutation can still be detectable. Further research is needed in 

order to properly address some theoretical issues that might affect our results, as well as to 

explore the performance of the approach with real pooled data. 
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