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1. Summary 

Objectives  

As many studies have shown, the gut microbiota plays an important role in the metabolism, 
nutrition, and immune system of monogastric animals. This suggests that microbial 
communities inhabiting the gastrointestinal tract could also influence feed efficiency. 

The objective of this deliverable was to evaluate the genetic effects influencing the composition 
of the gut microbiota as affect by a wide range of environmental conditions and physiological 
factors (i.e., maternal transmission, feeding regime, farm management, presence of antibiotics 
in the feed, sex, heat, and humidity). The aim was to propose criteria and methodologies to 
use variability in gut microbiota as a heritable trait affecting feed efficiency.  
 
Rationale:  

Results obtained in this deliverable rely on the analysis of five experimental designs conducted 
in rabbits and pigs and performed by INRA and IRTA: 

- A factorial design conducted at INRA allowed disentangling the maternal transmission of 
gut microbiota (neonatal environment) from the direct genetic effect of the animal in a 
cross-fostering trial between and within rabbit lines selected (INRA G10) or not (INRA G0) 
for feed efficiency (300 rabbits per line in three batches). 

- The interaction between feeding regime (i.e., ad libitum or restricted) and the genetic 
control of the gut microbiota composition was studied in relation to post-weaning growth 
and feed efficiency in a rabbit line (451 Caldes kits) selected by IRTA for high average daily 
gain after weaning.  

- The relationship between microbiota composition and apparent digestibility coefficients 
was evaluated in 60 castrated male pigs from Duroc, Large White, and Pietrain breeds 
raised in the experimental facility of INRA. Pigs were fed alternatively a low-fiber (LF) and 
a high-fiber (HF) diet during four successive 3-week periods from 11 to 23 weeks of age. 

- The impact of climate and heat challenge on microbiota composition was evaluated in 
female and castrated male pigs from a backcross design between Large White and Creole 
breeds. A total of 522 and 531 genetically-related pigs were raised either under a 
temperate or tropical climate, respectively, from 11 to 23 weeks of age. In the temperate 
climate, the pigs were exposed to an acute heat stress (HS) of 29°C during 3 weeks.  

- Sex and diet effects and association between feed efficiency and faecal microbial 
composition were investigated in 160 commercial three-breed crossbred pigs from Topigs 
Norsvin. 

All animals were genotyped and their faeces (pigs) or caecal content (rabbits) were collected.  

The microbial composition, diversity and richness of gut microbiota was characterized by 
means of Illumina sequencing of 16S rRNA gene amplicons (V4-V5 hypervariable regions) in 
a MiSeq platform. Raw paired-ended sequences were processed with QIIME/QIIME2 software 
by discarding the low quality and the chimeric sequences. Filtered sequences were assembled 
into contigs and then clustered into OTUs (Operational Taxonomic Units; contigs sharing a 
97% of similarity)/ASVs (Amplicon Sequence Variants; contigs sharing a 99% of similarity). 
The OTU/ASV table was filtered at sample (discarding those with less than 5,000 filtered 
contigs) and OTU/ASV (discarding those with less than 0.01% counts across all samples) 
levels. This table was normalized using the Cumulative Sum Scaling (CSS) normalization 
yielding the normalized abundances of 931/792 OTUs/ASVs. The taxonomic affiliation was 
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obtained using the RDP train set 15 with the utax algorithm (pigs and INRA rabbits) or the 
Greengenes reference database gg_13_5_otus/99 (IRTA rabbits). 

Differences in caecal microbial composition, diversity, and richness were assessed from a 
univariate perspective (i.e., bootstrap analysis of variance fitting a model with a factor 
combining the farm where the animal was raised, the batch, the feeding regime, and the 
presence or absence of antibiotics in rabbit feed) and from a multivariate perspective using: 
(1) Principal Variance Component Analysis, (2) sparse Partial Least Squares - Discriminant 
Analysis (sPLS-DA) and (3) machine learning algorithms (Support Vector Machine) selecting 
a certain number of OTUs/ASVs that allow the best discrimination of samples according to a 
given factor. 

Kruskal-Wallis tests, glm methodologies, or generalized Friedman rank sum tests with 
replicated blocked (package muStatsv1.7.0) were used to point out OTUs with significant 
abundancy differences between conditions (i.e., sex, temperature, diet, maternal effect, and 
line effect).  

Genetic determinism of the caecal microbiota of rabbits (IRTA) has been assessed by fitting 
two mixed models (i.e., a genetic model and another model without the additive genetic effect) 
for 14 representative traits of rabbit caecal microbiota (i.e., the relative abundances of 8 phyla, 
4 Ŭ-diversity indexes and the first 2 principal components computed from the relative 
abundance phyla table). To test the existence of a genetic determinism of caecal microbiota, 
different model choice criteria were used: (1) Deviance Information Criterion (DIC) and (2) 
Bayes Factor (BF). Variance components were computed (gibbs2f90) for the 14 traits. In INRA 
rabbits, the variance components (i.e., linear animal mixed model) and QTL analyses (i.e., 
fixed effect test of each of the 161 033 SNP) were performed using the GEMMA software. 

Prediction of growth and feed efficiency traits from microbiota data were evaluated using Partial 
Least Square Regression method (PLSR). 

The relationships between OTUs and the zootechnical traits were characterized by the 
maximal information coefficient (MIC) index and the background noise was estimated by the 
maximal value of random permutations. 

Mixed linear models were used to estimate jointly host genetic effects and microbiota effect on 
growth and feed efficiency traits. 

Teams involved:  

INRA, IRTA, TOPIGS 

Species and production systems considered: rabbits and pigs in all European countries 
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2. Introduction 

The gut microbiota is deeply involved in the physiology of its host through the regulation of 
digestion, metabolism, and immunity and, consequently, it could play a role in feed efficiency. 
The recent development of sequencing technologies (i.e., 16S sequences clustered into 
Operational Taxonomic Units) allows the description of this complex ecosystem in livestock 
species. Different factors have been demonstrated to influence the composition and functions 
of the gut microbiota, including maternal transmission, environment (i.e., diet composition and 
quantity, humidity, and heat), age, and physiological status. Specific datasets based on 
controled genetic and non-genetic factors, or using crossfostering, are needed to better 
evaluate the relative contribution of each effect (i.e., host genetics and microbiota).  

From month 1 to 48, data from five experimental designs were analysed to estimate the effect 
of genetic and non-genetic factors on the diversity and the composition of the  gut microbiota 
in pigs and rabbits. Specific statistical methods were used to study the genetic determinism 
(i.e., heritability and quantitative trait loci (QTL)) of the composition of the microbiota. 
Regression and machine learning models were applied for the prediction of growth and feed 
efficiency traits from microbiota data. 

3. Results 

3.1 Factors influencing gut microbiota composition 

INRA RABBITS 

The zootechnical parameters varied between the three batches of the trial, with the rabbits of 
the first batch having the most favorable feed conversion ration (FCR), essentially due to a 
reduced feed intake. The performance of the second and third batches were similar to each 
other (Figure 1). A linear model taking into account the foster dam, the biological mother, the 
sex, and the batch was used to test the different effects. The richness of the microbial 
communities of the kits decreased during the experiment (Figure 1), and this effect was even 
more significant when kits originating from dams that were treated with an antibiotic (baytril) 
during the second batch were excluded (P=10-6). The batch effect (i.e., the fact that the rabbits 
were grown in three consecutive batches) was also significant for the Simpson diversity (Table 
1). In parallel to the decrease in richness, the global composition of the gut microbiota drifted 
during the experiment (Figure 2). The observations were independent from the sex of the 
rabbit. 
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Figure 1. From left to right: impact of the batch on residual feed intake (RFI), feed intake, FCR, 
and richness of the gut microbes.  

 
Figure 2. PCA projection capturing 8% of the variability of the microbial data. The first batch is 
represented in black, the second batch in red, and the third batch in green. 

The microbial diversity in the gut of the rabbits at slaughter was higher in the rabbits fostered 
by G10 dams, independently of their genetic background. The neonatal environment and the 
genetic background interplayed on the Shannon index, as rabbits from the G10 line had a 
lower Shannon index only when fostered by a dam from the G00 line (P=0.0039). The Gini-
Simpson index exhibited the same pattern with less diversity in the G10 kits when focusing on 
rabbits fostered by G00 dams (P=0.019) (Table 1). 
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Table 1. Shannon, Simpson and Chao diversity (Richness) indexes tested with linear models 
including the effects of sex, batch, kit and foster dam lines and their interaction. 

  
Foster 

dam line 
Kit line 

Foster 
dam x 

kit 

Batch Sex 

1 
(N=162) 

2 
(N=177) 

3 
(N=187) 

M F 

R
ic

h
n
e

s
s 

FosterG00-
GenetG00 

1517 1542 1522 1493 1487 1559 

FosterG00-
GenetG10 

1496 1559 1491 1444 1507 1487 

FosterG10-
GenetG00 

1555 1623 1547 1504 1559 1550 

FosterG10-
GenetG10 

1542 1582 1535 1511 1549 1533 

P-value 0.034 0.32 0.8 0.0002 0.72 

S
h
a

n
n
o

n 

FosterG00-
GenetG00 

5.31 5.32 5.30 5.31 5.29 5.34 

FosterG00-
GenetG10 

5.23 5.23 5.18 5.26 5.23 5.22 

FosterG10-
GenetG00 

5.37 5.41 5.35 5.36 5.36 5.38 

FosterG10-
GenetG10 

5.37 5.39 5.34 5.38 5.40 5.33 

P-value 0.012 0.0008 0.02 0.43 0.76 

S
im

p
so

n 

FosterG00-
GenetG00 

0.984 0.984 0.985 0.984 0.984 0.984 

FosterG00-
GenetG10 

0.982 0.982 0.981 0.984 0.982 0.982 

FosterG10-
GenetG00 

0.985 0.985 0.985 0.985 0.985 0.985 

FosterG10-
GenetG10 

0.985 0.98 0.985 0.986 0.986 0.984 

P-value 0.33 0.004 0.051 0.08 0.34 

 

Interestingly, the four groups had a different variance, which depended only on the neonatal 
environment (P=0.00328; Figure 3), with higher variability of the microbiota in rabbits weaned 
in the environment provided by the G00 foster dams. 
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Figure 3. Variance of the distance to the centroid of the microbiota composition for each 
combination of foster dam line x kit line. 

The rare OTUs were filtered out before further analyses, thereby reducing the number of tests 
from 9,041 to 1,053 OTUs after rarefying at 12,228 sequences per sample, which represents 
95% of the sequences. The neonatal environment had the strongest impact on the microbiota: 
254 OTUs were affected by the foster dam line, 10 of which were also impacted by the genetic 
background of the kit.The latter impacted only 41 OTUs. Most of these OTUs (i.e., 93% in total, 
90% of the OTUs affected by the kit line and 87% of the OTUs affected by the foster dam line) 
could not be reliably classified at the genus level. The 10 OTUs affected by both the dam line 
and the kit line were either unclassified (5 OTUs), or belonged to the Alistipes (1 OTU), the 
Bacteroides (2 OTU), and the Butyricimonas (2 OTUs) genera. 

Perhaps unsurprisingly considering that 285 species were affected by the kit genetic 
background and the dam environment, the DAPC projection showed four groups discriminated 
by the dam environment and kit genetic line (P<0.0001; Figure 4). 
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Figure 4. DAPC projection using 150 principal components: 97.4% of the variability of the initial 
dataset was captured in the principal components, while the DA projection represented 88% 
of that variability. The neonatal environment from the foster dam (envirG00 or envirG10) was 
combined with the genetic line of the kit (genetG00 or genetG10). 

IRTA RABBITS 

Bootstrap analyses of variance were performed to study the effect of different factors (i.e., the 
farm where the animal was raised, whether it was fed ad libitum or under restriction, and 
whether it received a diet supplemented with antibiotics or without antibiotics) on microbial 
composition (i.e., relative abundance of bacteria at different taxonomic levels summarized in 
ASV) and Ŭ-diversity indexes of IRTA rabbits caecal microbiota.  

Univariate analyses revealed that 450 out of the 844 ASVs were differentially represented 
between farms, nine between feeding regimes (ad libitum vs restricted), and 157 between diets 
with and without antibiotics (Annexes 1, 2, and 3). 

All Ŭ-diversity indexes reached different magnitudes in the two farms (Table 2). The Chao1 
and Shannon indexes, and the number of observed ASVs were different between gut microbial 
populations of rabbits fed with antibiotics and that from those not taking antibiotics (Table 3). 

Table 2. Ŭ-diversity indexes differentially represented between IRTA rabbits raised in two 
different farms. 

-hdiversity index Difference between farms SE PFDR 

Observed ASVs 74.22 10.70 0.00 

Chao1 76.66 11.38 0.00 

Shannon 0.43 0.07 0.00 

Inverse Simpson 16.18 3.53 0.00 
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Table 3. Ŭ-diversity indexes differentially represented between IRTA rabbits fed without 
antibiotics and with antibiotics. 

-hdiversity index Difference between diets SE PFDR 

Observed ASVs 37.68 17.15 0.05 

Chao1 37.42 18.25 0.05 

Shannon 0.27 0.11 0.05 

 

The sPLS-DA analyses, which select (based on a lasso penalty) ASVs that best discriminate 
the samples according to a tested factor, revealed that: 

1. For farm comparisons, 570 ASVs were selected in component 1 as differentially 
represented between farms, which explained 3.9% of the total variability of the microbiota 
composition (Figure 5). Further univariate analyses indicated that 398 of these 570 ASVs 
were differentially represented between farms.  

 
Figure 5. sPLS-DA representing samples of animals raised in the Maspons farm (blue) 
and in the TM_NOVA farm (orange). 

2. For feeding regims comparisons: 160 ASVs were selected in component 1 as differentially 
represented between feeding regimes in the Maspons farm. These ASV only explained 
0.95% of total variance (Figure 6). Further univariate analyses also indicated that five of 
these 160 ASVs were differentially represented between feeding regimes in the Maspons 
farm. In total, the univariate analyses indicated declared only seven ASVs as differentially 
represented between feeding regimens, i.e. two that did not contribute to the sPLS-DA first 
axis and five that did. 
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Figure 6. sPLS-DA representing samples of animals fed under restriction (blue) and ad 
libitum (orange) in the Maspons farm. 

3. For the combination of antibiotics and feed regime effects: 635 ASVs were retained for 
component 1 (2.61% of total variance) and 170 ASVs for component 2 (2.11% of total 
variance), which allowed the discrimination of samples according to the combination of two 
factors: presence or not of antibiotics in the diet, and feeding regime (i.e., restricted vs ad 
libitum) of animals raised in the TM_NOVA farm (Figure 7). Further univariate analyses 
declared 63 of these 805 ASVs differentially represented between feeding regimes and 
diets combinations within the TM_NOVA farm. In this case, 67 ASVs were identified as 
differentially affected by feeding regimes and diets combinations using univariate analysis. 

 
Figure 7: sPLS-DA representing samples of animals fed under restriction without 
antibiotics (blue), fed ad libitum without antibiotics (orange), fed under restriction with 
antibiotics (gray) and fed ad libitum with antibiotics (green) in the TM_NOVA farm. 
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In general, important differences were observed between sPLS-DA and univariate analyses in 
the number of ASVs declared as different depending on the tested factors: the number of ASVs 
discriminant in the sPLS-DA was always larger that those significant with the univariate 
analyses. However, nearly all the ASVs selected from the univariate methods were selected 
in the sPLS-DA. Nevertheless, the low percentage of total variance that the different 
components of the sPLS-DA explained was surprising, with a maximum of 3.9% for the largest 
percentage.  

The Support Vector Machine (SVM) algorithm provided another multivariate perspective to 
classify samples according to the feeding regime based on the OTUs abundancies (i.e., in this 
analysis, sequences were pre-processes using the QIIME software) as predictors. After 
ranking OTUs in an unbiased Random Forest algorithm based on conditional inference, 
subsets of 50, 100, 150, and 200 most informative OTUs were used for classification of test 
sets. The classification quality and the stability of the results in all test sets improved with 
increased number of predictors (OTUs), but differences were not significant (Figure 8). The 
best classification was obtained with the subset of 200 OTUs, with 91% chances of exact 
classification of the samples. Using the whole set of OTUs as predictors degraded the 
classification quality due to the effect of non-informative OTUs (89% of good prediction). Five 
out of the 10 OTUs that contributed the most to the classification were overrepresented in 
caecal samples of animals fed ad libitum, and all were assigned to the order Clostridiales 
(P>0.80). The other five OTUs were overrepresented in samples of animals that were 
restrictedly fed. Four were assigned to the same order Clostridia.  

 
Figure 8. Classification accuracies with different subset sizes of OTUs predictors. 

The method and input data used in the machine learning procedure were different from those 
of the univariate analyses and the sPLS-DA. Specifically, 97% of the OTUs obtained with the 
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QIIME software were used for the machine learning classification, whereas 99% of the ASVs 
obtained with QIIME2 software were employed in the other analyses. The machine learning 
classification was applied to records from the Maspons farm only. 

INRA PIGS - EFFECT OF DIETARY FIBRE CONTENT, BREED, AND AGE 

Using a principal variance component analysis, the variance of the composition of the faecal 
microbiota was explained by the diet (32% of the total variance), test period (21%), and breed 
(1.5%). 

In pigs fed the low-fibre (LF) diet, at the end of the first period, faecal microbiota composition 
was used in a sparse partial least square discriminant analysis (sPLS-DA) to discriminate the 
pigs according to their breed, with 13.9% misclassification error-rate and 200 OTUs (Figure 9). 
However, once fed a high-fibre (HF) diet, the sPLS-DA was unable to discriminate pigs from 
the different breeds, suggesting that an exposure to the HF diet eliminates the difference 
between breeds. 

 
Figure 9. Score plot of two-component sPLS-DA model showing faeces samples clustering 
according to breed, with the percentage of variance captured for each principal component 
(ȹ: Duroc, Ǐ: Large-White, O: Pietrain), for the animals fed the low-fibre diet during period 1. 
According to the cross-validation permutation test, the misclassification error-rate was 14%. 

Irrespective of the breed and the period, the dietary significantly influenced the composition of 
the microbiota composition (Figure 10). In a general linear model (GLM) analysis, 1,641 out of 
2,041 OTUs were different between the LF and HF diets. In a sPLS-DA, 31 OTUs were used 
to discriminate pigs according to their diet with a 3.9% error-rate, and could be used as 
biomarkers of the dietary treatment. 
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Figure 10. Score plot of a two-component sPLS-DA model showing faecal sample clustering 
according to the diet, with the percentage of variance captured for each principal component 
(ȹ: Low-fibre diet, o: High-fibre diet). According to the cross-validation permutation test, the 
misclassification error rate was 3.9%. 

This discrimination was not affected by the previous diet or previous switches of diets, 
illustrating the resilience of the biomarkers. 

 
Figure 11. Variation of the relative abundancy of predictive OTUs of diet effect. The three most 
contributive OTUs from the low-fibre diet (LF) (OTU 514: purple, OTU 1140: light blue, OTU 
923: orange) and the high-fibre diet (HF) (OTU 792: dark blue, OTU 689: red, OTU 1940: 
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green) were extracted from the sPLS-DA analysis using their contributions to the first principal 
component. 

The relationship between microbiota composition and digestibility coefficients was tested using 
Pearson correlations (Figure 12). In the LF diet, 83 and 65 OTUs were correlated with the 
digestibility coefficients of N and energy, respectively (P<0.05), and 49 and 37 OTUs were 
correlated with the digestibility coefficients of cellulose and hemicellulose, respectively. The 
significant correlation coefficients ranged from 0.29 to 0.36 for positive correlations (0.31 on 
average), and from -0.29 to -0.45 for negative correlations (-0.34 on average). In the HF diet, 
no OTUs were found that correlated with digestibility coefficients. 

 

 
Figure 12. Correlated OTUs (represented by dots colored according to the taxonomical family 
of the corresponding bacteria) to digestibility coefficients (energy, N, hemicellulose, and 
cellulose) in pigs fed the low-fibre diet (Pearson correlations). The negative and positive 
correlations are represented by red and green lines, respectively. 

Clostridiaceae 1 (Clostridium sensu stricto and unclassified at genus level), 
Erysipelotrichaceae (Turicibacter), and Peptostreptococcaceae (Clostridium XI) were 
negatively correlated with energy and nitrogen digestibility coefficients, whereas 
Lachnospiraceae (Blautia, Coprococcus and Dorea genera) were negatively correlated with 
the digestibility of energy, cellulose, or hemicellulose. Two OTUs belonging to Clostridiales 
Incertae Sedis XIII and four Streptococcus were negatively correlated with the digestibility of 
cell wall components. Ruminococcaceae negatively correlated with cellulose, hemicellulose, 
nitrogen, and energy digestibility. 

Prevotellaceae (mainly Prevotella genus) were negatively correlated with the digestibility of 
cell wall components, except for six unclassified Prevotellaceae, which were positively 
correlated with energy and nitrogen digestibility. 

Lactobacillaceae were positively correlated with nitrogen, energy, cellulose, and hemicellulose 
digestibility, except one negatively correlated with cellulose digestibility. The only genus 
represented in this family was Lactobacillus. 
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INRA PIGS - EFFECT OF ACUTE AND CHRONIC HEAT STRESS ON THE COMPOSITION 

OF MICROBIOTA  

The microbiota composition was evaluated in female and castrated male pigs from a backcross 
design between Large White and Creole breeds from faeces collected at 23 weeks of age in 
two climates (abbreviated TEMP23 and TROP23 for temperate and tropical climates, 
respectively) and at 26 weeks of age in the temperate climate (TEMP26). 

Using a principal component analysis, the variance of the faecal microbiota composition was 
explained by the environment (TEMP23, TEMP26, TROP23; 20% of the total variance), sire 
family (3.9%), batch (3.2%), and sex (0.8%). Irrespective of the environment, the microbiota 
composition was dominated by Firmicutes and Bacteroidetes phyla (91.7, 88.3, and 87.5% for 
TEMP23, TEMP26, and TROP23, respectively). The relative abundance of Firmicutes, 
Proteobacteria and Spirochaetes was greater (P<0.05) in the tropical climate than in the 
temperate climate. The relative abundance of Actinobacteria and Bacteroidetes was greater 
(P<0.05) in TEMP23 compared to TEMP26 and TROP23 environments. 

The diversity of the microbiota was not affected by heat stress, but the microbiota composition 
differed significantly. Generalized linear models (GLM) analyses highlighted 182 OTUs that 
differed in abundancy between TEMP23 and TEMP26 and corresponded to two biological 
pathways, and 1,296 OTUs that differed in abundancy between TEMP23 and TROP23 and 
corresponded to 20 pathways. From these comparisons, we could extract OTUs systematically 
more abundant in hot conditions (either in the tropical climate or after a heat challenge in the 
temparete climate) (Figure 13). These 78 OTUs belonged mainly to Prevotellaceae family 
(41% of the OTUs) and Lachnospiraceae family (18%). In contrast, 37% of the 43 OTUs that 
were always more abundant under TEMP23 came from the Clostridiaceae 1 family and 5% 
from Peptostreptococcaceae family. 

 
Figure 13: Venn plot representation of the OTUs differentially abundant in a GLM analysis, 
aggregated at the family level, between TEMP23 vs. TEMP26, and between TEMP23 vs. 
TROP23. 
























































