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1. Summary 

Objectives 

The purpose of the model is to quantify the variability in individual trait responses within 

a livestock population whose individuals share a common factor, e.g., are of the same 

breed, live in the same farm, or are offered the same feed. In addition to assessing trait 

variability within a given a population, the approach will also allow comparisons 

between populations, e.g., that differ in species, breed, environment, or feed, 

accounting for both their average and their inherent variability in trait responses.  

The Deliverable has the following objectives towards these aims:  

1) To characterise and estimate trait variability from a dataset on a herd, flock or 

breed. 

2) To predict and summarise the influence of variation in model-derived traits on 

trait variation in a production system. 

3) To demonstrate the approach on different monogastric species and on 

performance and reproduction traits. 

Rationale: 

We developed a modelling approach that has multiple applications in precision 

livestock farming, nutrition, and selective breeding. The approach is demonstrated 

through three case studies on monogastric livestock: growth in pigs, and reproduction 

in sows and in laying hens. Comparison of trait variability across these species and 

traits shows common aspects that they share as well as their distinctive features.  

This methodology comprises a data-driven (top-down) approach, where models are 

fitted to phenotypic trait data obtained from multiple individual animals; and a 

simulation (bottom-up) approach, where population phenotypic variation is derived and 

summarised by the average and deviation (i.e., median and confidence interval) for 

each modelled trait. The approach has the following benefits in relation to current 

alternatives: 1) Making no prior assumptions about the distributions of traits and their 

correlations within the population; specifically, it is assumed that the population traits 

are distributed according to the trait distribution in the group of sampled animals (non-

parametric approach). 2) Being computationally faster than current parametric 

approaches; specifically, the distribution of traits in the wider population is inferred from 

that in the sample through a process of individual resampling. 3) Having no specific 

requirements on the size and quality of the datasets input.  

Teams involved:  

UNEW, INRA, Topigs 

Species and production systems considered:  

Commercial pig breeds, experimental hen lines, simulated sows. The results are 

applicable to all monogastric species raised across Europe.  
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2. Introduction 

Motivation 

It is necessary to introduce stochasticity (i.e., variation) in predictive models of livestock 

production to account for trait variation across individuals in a herd, flock or breed. The 

introduced stochasticity should preferably be based on empirical data, because 

different forms of modelling stochasticity in individual traits can lead to disparate 

conclusions about variation in populations.  

There are important benefits from accounting for phenotypic variation in model 

predictions rather than using predictions solely for the ‘average’ animal (Kyriazakis, 

2011; van Milgen et al., 2012; Saintilan et al., 2013; Filipe et al., 2018a; Pomar et al., 

2018; Filipe and Kyriazakis, 2019; Tullo et al., 2019); these include the following:  

1) Knowledge of the range and distribution of individual output within a group 

provides the user with information about deviations from the average individual 

output; moreover, it offers users a more accurate prediction of the group’s total 

output, i.e. the total is usually different from (average productivity) x (number of 

animals).  

2) This knowledge also allows prediction of the level of uniformity in the group (e.g., 

how many individuals conform to market requirements) and thus allows 

prediction of the current market value of a given batch, herd or flock.  

3) Knowledge of the dynamic performance of each individual or each pen, allows 

for real-time implementation of individually- or pen-targeted feeding and health-

improvement schedules for optimal allocation of resources.  

4) Prediction of the variation in model-derived traits within a population can assist 

the achievement of breeding goals when genetic selection utilises model-

derived traits.  

5) A more robust comparison between populations (e.g., different breeding lines) 

in different environmental conditions, or offered different diets.  

These benefits will help breeders and producers, improve animal welfare, and reduce 

environmental impact by contributing to the implementation of modern precision 

livestock farming practices (PLF), and, therefore, will contribute to the broader aim of 

delivering greater sustainability and robustness in intensive livestock production 

systems. 

Problem 

Estimating and modelling variation in traits requires much more computation than 

estimating and modelling an average animal. In other words, instead of doing one 

calculation, we need to perform many calculations, which is has extra computational 

cost. The approach that we have developed and implemented here is a trade-off 

between this extra computational cost and the benefits from having information on the 

deviations from the average.  



Feed-a-Gene – H2020 n°633531 

f 

Page 5/22 

Progress has been made in animal science to predict the distribution of animal 

productivity within populations (Ferguson et al., 1997; Knap et al., 2003; Pomar et al., 

2003; Vautier et al., 2013). This methodology relies on two steps. First, the assumption 

and calibration of a certain plausible distribution of model trait parameters in the 

population; typically, a multivariate-normal distribution of parameters calibrated via an 

empirical or expert-based variance-covariance matrix (top-down approach). Second, 

the simulation of the trait variation in the population under the assumed distribution 

(bottom-up approach). There are several disadvantages in assuming explicit 

population trait distributions, such potential inaccuracy and difficulty of calibration. 

Approach taken  

We develop a combination of top-down and bottom-up approaches that has two 

important features (Filipe et al, 2018a; Filipe and Kyriazakis, 2019). First, the 

methodology is non-parametric, i.e., it draws the trait distribution and correlations 

implicit in the empirical data without making explicit and potentially inaccurate 

assumptions about such distributions and correlations. Second, the methodology 

requires much less computation than using the latter assumptions, because it does not 

require the construction of and simulation from a hypothetical trait distribution. In the 

top-down step, a data-driven approach is applied where models are fitted to phenotypic 

trait data obtained from multiple individual animals. In the bottom-up step, the following 

approach is applied for estimating population phenotypic variation. Instead of 

assuming a theoretical distribution or expert-informed parameter ranges, it is assumed 

that the population traits are distributed according to the trait distribution in the group 

of sampled animals. This assumption is common to a broad range of non-parametric 

approaches. In addition, the distribution of traits in the wider population is inferred from 

that in the sample through a process of random individual resampling. The approach 

is completed by a statistical evaluation of the average and deviation (i.e., median and 

confidence interval) of each modelled trait in the population. Regarding the literature, this 

method contains assumptions that relate (but are not identical) to those made in 

bootstrap (Efron, 1982) and quantile regression (Koenker and Bassett, 1978) and 

combines them with other modelling components. 

Scope 

This modelling approach applies to the prediction and quantification of phenotypic 

variation within populations of different species, breeds, and herds of livestock. The 

phenotypic variation can comprise any number of traits that are measured or model-

derived, and the correlations among traits are inherently preserved. The approach can 

be used for multiple purposes. Here, we focus on a selection of non-ruminant livestock 

species and performance and reproduction traits relevant to applications in farming, 

nutrition, and selective breeding. 
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3. Method 

A first requirement in modelling population phenotypic-variation is the availability of 

longitudinal trait observations from multiple individual animals. These individuals are a 

sample from the relevant large population or are the full population. The first stage in 

the method (Filipe et al., 2018a; Filipe and Kyriazakis, 2019) is to estimate the 

stochasticity in trait parameters across the population (top-down approach); here, 

model curves are fitted to each individual dataset and their associated trait parameters 

are estimated. The second stage is to quantify the variability in the relevant traits that 

is a consequence of this stochasticity (bottom-up approach). The detailed components 

of the method are the following. 

1-Assumption. The distribution of a given set of animal traits within the large 

population is represented by the joint variation of these traits across the individuals in 

the sample taken from that population. As a result, the variation in other, model-derived 

traits will be naturally associated to the variation in observed traits among the 

individuals in the sample. 

2-Variability in trait parameters. Trait parameters for each individual in the sample 

are estimated by fitting a model to the observed traits. There are different techniques 

for fitting data and estimating parameters. Given that the models are non-linear, we 

used non-linear least-squares point estimation; other estimation techniques would also 

be suitable for this purpose (Filipe and Kyriazakis, 2019). The outcome is a distribution 

of model-based trait parameters across the sample. According to the assumption, this 

distribution is representative of that in the large population. 

3-Resampling. The variation in model-derived traits in the large population is inferred 

by resampling individuals randomly from the sample, repeatedly up to a chosen 

population size. This step has the effect of making the statistical value of the quantiles 

(evaluated below) converge to a stable value as the size of the resample becomes 

large compared to the size of the sample (unless the sample is very large, in which 

case both values should agree). As, according to the assumption, the individuals in the 

resample are repeated from the sample, no further computation of the model traits is 

required, only a recalculation of the statistics of these model traits. The resampling 

step is optional. The alternative is to use the sample itself, in which case the inferences 

do not extrapolate to a large population. The choice of whether to focus on trait 

distributions within the sample or in a larger population depends on the specific 

application and on the relevant question addressed (see applications in Discussion).  

4-Quantiles of the trait distribution. For dynamic traits, a set of time points (or points 

on another covariate) are chosen. The set can be within or, in the case of forecast or 

hind-cast, beyond the longitudinal range of the data. For each modelled trait, quantiles 

of its distribution (in the resample or sample) are evaluated at each time point. Here, 

the 5%, 50%, and 95% quantiles were used to represent the trait average (via the 

median) and confidence interval (area between the 5% and 95% quantile curves, which 
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contains 90% of the individuals in the population). Examples of dynamic traits are live 

weight and protein weight. Non-dynamic traits associated to the latter are the live 

weight and protein weight at a given stage (e.g., maturity), or the average weight gain 

or protein deposition over a given period. For non-dynamic traits, quantiles are 

evaluated only once. A modelled trait can be a model representation of an observed 

trait (e.g., live weight or live weight gain) or a model-derived trait that is not observed 

but is related to observed traits via biological assumptions (e.g., the intrinsic growth 

rate, dynamic or mature protein weight, or mature live weight) if not observed.  

Diagnostics of model fitting and data outliers. The user of the method may wish to 

check the quality of the model fitting or to identify and tackle potential outlier individuals 

in the population sample. A detailed account of the diagnostics on fitting and outliers 

and example diagnostic results (case study 1) is given in Annex 1. 

4. Case studies 

4.1 Growth of live weight in boars 

 Data was provided by Topigs. 

 Datasets: Individual data on live weight of boars of a single breed during the 

finishing growth: 119 animals; weight range 25-165 kg. The animals are a 
contemporary cohort offered the same dietary schedule ad libitum. 

 Production model: Gompertz curve fitted to live weight (Filipe et al., 2018a). Other 

growth models could be used without altering the general outcomes of the method. 

4.2 Egg production in hens 

 Data was provided by INRA. 

 Datasets: Individual data on hen egg laying and egg weight in two experimental 

lines divergently selected for residual food intake: 29 animals; age range while 

laying was 19-38 weeks; weighing of the eggs took place during 28-31 weeks of 

age. The lines are part of a long-term experimental programme (Bordas et al., 

1992). The data from the two lines (one with 16, another with 13 animals) were 

merged into a single population sample to increase the sample size. While it is 

expected that reproduction traits are not significantly affected by this selection, 

some differences between lines are still likely. For our purpose of illustrating the 

approach, it is adequate to consider a genetically heterogeneous group, which tests 

the approach in the characterisation of potentially large phenotypic variation. Future 

applications of the approach could focus on the differences between these lines. 

 Production model: Gompertz curve fitted to egg output; power-law curve fitted to 

cumulative egg mass. Again, other curves could be used here. 
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4.3 Gestation and lactation in sows 

Sow datasets at individual level and with longitudinal observations, as in the other case 

studies, were currently not available. As an alternative, we used simulated data, i.e. 

phenotypically-diverse outputs from a model where the variation is not informed by 

observation data. This case study allows us to demonstrate that: 1) gestation and 

lactation traits can be characterised using this approach in the same way that other 

traits can; and 2) the approach can be used for analysing artificial trait variability as 

well as trait variability based on observations. In addition, this case study shows that 

when it is advantageous to use simulated rather than observation-based population 

data, trait variability within the simulated population can still be adequately 

characterised. 

Assumption: To simulate artificial phenotypic variability, trait parameters that are 

inputs of the model were varied under the assumption that their range of variation is 

representative of the parameter distribution that would be obtained if the model were 

fitted to data from multiple individual sows. Such approach to generating phenotypic 

variability in a model population relates to those used in animal science (Knap et al., 

2003; Pomar et al., 2003; Vautier et al., 2013). 

 Data simulated by INRA. 

 Datasets: Individual data on four sow traits during gestation and lactation: 26 

simulated animals, during eight parities (first service at 140 kg and mature body 

weight after farrowing of 270 kg). 

 Generation of data was via the model of Dourmad et al. (2008):  

o Output traits: Live body weight, body protein, and body lipid during gestation and 

lactation; milk produced during lactation. 

o Variability in input traits: These model output traits were simulated for each of 

26 sows with distinct artificially-defined phenotypic profiles. This phenotypically-

diverse population was constructed as follows. 1) A basic individual profile was 

defined by setting typical values of key sow and litter trait parameters in the model, 

such as sow body weight, backfat thickness, and feed intake at given critical 

stages of the production cycle, and piglet growth and survival. A facility of the 

model was used to ensure that the model output traits of the sow, such body 

weight and backfat thickness, did not deviate from the defining inputs throughout 

the long period of the simulation (eight parties, >1000 days); this involved 

calibrating the maintenance energy expenditure during gestation and lactation, 

and the minimum protein mobilisation during lactation. 2) Each of the other 25 

individual sow profiles in the population was defined by changing one of the 

following traits: sow feed intake during lactation (basic value 5.8 kg/d, range 5.22 

to 6.5 kg/d), sow body weight loss during lactation (basic value 25 kg, range 22 

to 28 kg), and number of piglets born alive (basic value 12.5, range 10.5 to 14.5); 
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in each of these individuals no more than one trait was changed with respect to 

the basic sow profile because the trait correlations across sows are not known. 

5. Results 

5.1 Growth of live weight in boars 

The live weight observations of the 119 boars (Figure 1A) show that each individual 

has a distinct growth trajectory and a specific age range during which weight was 

recorded. The X-axis ranges from the median first age of recording (76 d, 33 kg) to the 

maximum age of recording across animals (196 d, 167 kg); it does not start at the 

minimum first age of recording because there are too few individuals at the earlier ages 

of recording to estimate population quantiles. 

The average (median) and confidence interval (CI, area between the 5% and 95% 

quantiles) characterise adequately the distribution of live weight across the population 

over the recorded finishing period (Figure 1B): approximately 10% of the individuals 

are outside the CI. The quantiles are based on resampling 1000 individuals out of the 

sample of 119 animals.  

The median live weight has an inflection point around age 175 d (Figures 1C and E), 

which is very close to the average age of maximum growth for males of this breed 

(Egbert Knol, personal communication). An estimate of the inflection point based on 

the median is generally more robust and thus preferable to one based on the mean, 

because the median is not sensitive to outlier animals. The predicted daily gain, which 

is above 1 kg/d for only a short period (Figure 1E), is also in agreement with empirical 

expectation for this breed. 

Prediction beyond the observed range shows the expected population average and CI 

up to 250 d (Figure 1D). The future width of the CI indicates how variability in weight 

might increase as the animals in the herd grow further. The CI width quantifies both 

predicted variability and uncertainty about future growth. The degree of uncertainty 

depends on the amount of information and noise in the past data; therefore, it is 

possible and plausible that a CI is wider than expected in practice, especially if the 

expectation were based on average observations (i.e., without deviations). Real-time 

prediction, where performance in the following day or period is predicted based on 

performance in a previously recorded period, could be tested by fitting the model to a 

narrower age range than in Figure 1D and predicting performance based on the 

parameters estimated using the narrower range. It is likely that the average would not 

be significantly affected, but that the CI would be wider than that based on the full data 

as in Figure 1D. 
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Diagnostics of model fitting and data outliers 

The user of the method may verify the quality of the model fitting to the boar data or 

identify and tackle potential outlier animals in the sample. Results of the diagnostics 

on fitting and outliers are available (Figure 2 in Annex 1). 

 

 

 

 

 

 

Figure 1. Growth in boars. A) Observed individual trajectories. B) Predicted population 
average (median) and 90% CI, overlapped on the data to which the model was fitted to 
individual by individual. C) As B, but without showing the dataset; note the average age at 

maximum growth (inflection point) at 175 d. D) Prediction as in B, but beyond the data range 
(197 d) to 250 d. E) Daily rate of weight gain, population average and CI; the maximum gain 

occurs at 175 d; an alternative evaluation of the average daily rate of weight gain (blue line, 
obtained by differentiating the average curve in B) is close but is a less suitable estimation.  
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5.2 Egg production in hens 

Egg output 

The observed number of eggs laid by each of the 29 hens (Figure 3A) shows that each 

individual follows a distinct production trajectory since the age of start of laying and 

during the given period of observation. The age of start of laying differed among hens 

(19-23 wk), but here we focused on the production trajectory of each hen regardless 

of the age of start of production. 

The average and CI characterise suitably the distribution of egg output across the 

population over the recorded laying period, as approximately 10% of the individuals 

are outside the CI (Figure 3B). The CIs are determined by the fitted model trajectories 

(Figure 3C) and are based on a 1000-large resample. The noise in some extreme 

observed trajectories makes them differ somewhat from the fitted trajectories (Figure 

3C), leading to some difference between outliers in Figures 3B and 3C. However, the 

average curve is robust to such variation. 

The population average and CI of eggs output are prediction beyond the data range, 

up to 30 wk of laying (Figure 3D). In principle, it is possible to predict egg output up to 

any future point, and even to predict lifetime production individually and across the 

population. However, the shortness of the observed laying period (up to 18 wk) 

compared to the typical duration of laying (up to 2 years, depending on genotype), 

does not make for reliable long-term prediction; this is perhaps suggested by the shape 

of the average and CI beyond the data range. 

The average daily rate of egg output declines consistently over time, although it is 

relatively constant up to 10 wk (Figure 3E). The decline at the end of the observations 

is probably excessive, which is likely a result of the short duration of the observations. 

Egg mass 

The cumulative egg mass produced during the laying sequence also shows variation 

among individuals, suggesting that some hens produce larger eggs (with the exception 

that a few hens lay multiple eggs on some days (Figure 3E), which does not imply 

larger eggs). A difference relative to egg output is that cumulative egg mass (along the 

egg sequence) is less variable within each individual’s production history. The 

predictions up to 30 wk in laying are similar to but reflect the lesser variability than in 

egg output (Figures 4A-D). The average daily egg mass produced increased slightly 

during laying, but the corresponding population variation is nearly constant, (i.e., egg 

weight variation occurs among and not within hens; Figure 4E) as already suggested 

by Figure 4A. 
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Figure 3. Cumulative egg output of each hen over time since start of laying. A) Observed 
individual trajectories; the age of start of laying varies among hens (19-23 wk) but is not 
included here in order to focus on the period of production. B) Predicted population average 
(median) and 90% CI, overlapped on the data to which the model was fitted to individual by 
individual. C) As B, but showing individual model-fitted trajectories. D) Prediction as in B, but 
beyond the data range (18 wk) to 30 wk laying. E) Daily rate of egg output, population average 
and CI; the rate of egg laying decreases slowly but consistently (as also evident from A-D). 

  



Feed-a-Gene – H2020 n°633531 

f 

Page 13/22 

 

 

 

 

 

 

 

Figure 4. Cumulative eggs mass laid during the laying sequence. Similar to Figure 3, but 

focusing on the mass of individual eggs (during 28-31 wk of age, i.e. 28 d) in terms of the 
ranking in laying sequence. A) Observed individual trajectories. B) Predicted population 
average (median) and 90% CI, overlapped on the data to which the model was fitted to 
individual by individual. C) As B, but showing individual model-fitted trajectories. D) Prediction 
as in B, but beyond the data range (29 eggs were laid) to 50 eggs laid. E) Daily egg mass laid, 
population average and CI; the egg mass increases very gently throughout. In the majority of 
occasions, the egg mass is that of a single egg laid; on a few occasions, some individuals laid 
>1 egg (i.e., 2 or 3; Figure 4E), in which cases the egg mass is that of the total eggs laid. 
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5.3 Gestation and lactation in sows 

There is large variability in the four modelled traits of a gestating and lactating sow: live weight, 

protein weight, lipid weight, and mass of milk produced, both within the population and over 

time (i.e., across and within parities) (Figure 5A-B and E-F). The trait distributions, generated 

under the working assumptions (Case Study 3), are denser in the centre, which represent sows 

of similar phenotype expression (those that differed in body weight loss during lactation). 

Above and below the centre, the distributions are relatively evenly dispersed, representing 

sows of differing litter size or feed intake level. The distributions are not symmetric (Figure 5A 

or B), and there is no reason they should be. Milk production (Figure 5F) occurs only during 

the lactation. In the model used (Dourmad et al., 2008), milk production is not sensitive to some 

of the defining traits varied as a result of key assumptions on which the model builds.  

Clearly, these artificial-trait distributions are suitable for illustrating how the method 

characterises variability in sow populations. The median of each trait (Figure 5C-D and G-H) 

tracks the time trend within in the sampled population. The medians also happen to be close 

to the centre of the distributions (Figure 5A-B and E-F) because the sow population was built 

to be relatively symmetric, but could deviate from the centre if the distributions were more 

asymmetric. 

The CIs follow the temporal trend of the averages and characterise the variability within the 

population, e.g. only a few of the 26 individuals are outside the 90% CIs. These CIs show that 

there is considerable deviation from the average, but to a degree that depends on the trait. 

Such differences are more clearly seen by examining the deviations relative to the average 

(DRtA = (Y(t)-Yav(t))/Yav(t) where Y is the response and t is time) (Figure 6). Population 

deviations from the average are larger during lactation as the sow’s body resources are used 

to respond to the increased requirements of the piglets (which grow faster and are more 

physically active than during gestation). At its largest, the CI DRtA is 10% for live weight, 

<10% for body protein, and >20% for body lipid (Figure 6A-C). 

Describing the population using the average curve would miss out important information: the 

amount of deviation from the average, how this deviation changes over time, and how the 

deviations differ among traits. On the other hand, describing such phenotypic characteristics 

would be difficult using serial observations across individuals (if such data were available) or 

multiple individually-fitted curves. That purpose is achieved adequately and simply by the CIs. 

The predicted CIs do not rely on assumptions about the population distribution and correlations 

of the traits and, therefore, are robust for applications to large numbers of simultaneous traits 

and to complex trait dynamics where the correlations may be unknown.  

The relative deviations in protein and live weight within the population are comparable and 

appear plausible, while those for lipid weight are considerably larger. This fact results from the 

underlying assumptions of the sow model, where that all energy intake not used for protein 

deposition or maintenance is deposited as lipid (Dourmad et al., 2008). In practical 

applications, the levels of maintenance energy and protein mobilisation during lactation are 

adjusted so that lipid and body mass remain stable across the multiple parities. This adjustment 

was not implemented here, which explains the variation in lipid. These technical aspects 

illustrate practical difficulties in modelling sows over multiple parities, but are not relevant to 

our purpose of illustrating the potential of the approach to characterise phenotypic variation in 

general. Moreover, while we could have focused on a single parity, we preferred to show the 

potential of the approach to capture population variation with complex changes over time. 
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Figure 5. Gestation and lactation in sows. A-B, E-F) Artificial dataset of individual-sow 

trajectories for each of the traits considered: live weight, protein weight, lipid weight, and mass 
of milk produced during lactation. C-D, G-H) Average and 90% CI of population distribution of 
each of the traits. 
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Figure 6. Gestation and lactation in sows. Deviation of the 90% CI with respect to the 
population average (DRtA). A, B, C, D correspond to C, D, G, H in Figure 2. Other details as 
in Figure 5. 

6. Discussion 

The modelling approach developed here quantifies and predicts variation in animal 

traits within populations using empirical data from livestock herds or flocks. The results 

demonstrated the approach on growth and reproduction traits in monogastric livestock, 

i.e. growing pigs, and reproducing sows and laying hens. Comparison of trait variability 

across the species and traits considered showed common aspects that they share, 

e.g. growth in pigs and egg output in hens, as well as their distinctive features, e.g. egg 

output and egg mass in hens and gestation and lactation in sows.  

Approach benefits 

The approach makes no prior assumptions about the distributions of traits and their 

correlations within the population (Filipe et al., 2018a; Filipe and Kyriazakis, 2019). 

Additionally, the approach is computationally faster than parametric approaches by 

relying solely on model computations for the observed individuals, and thus avoiding 

model and statistical computations pertaining to hypothetical individuals drawn from 

an assumed trait distribution. Moreover, the approach has no specific requirements on 

the size and quality of the datasets input. 
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Data characteristics 

The traits whose variation is predicted can be traits that are observed, i.e. at points 

during growth, or that are not observed such as model-derived traits, e.g. body lipid 

and protein in the sow example. The approach works both for empirical samples that 

have a small or a large number of individuals, and regardless of whether the 

longitudinal observations are smooth or noisy. In addition, the approach can quantify 

variation in datasets not from empirical samples but from model output generated 

under plausible assumptions, e.g. ranges or distributions of trait parameters, as in the 

sow case study. 

Application areas 

The approach can be used for multiple purposes in precision livestock farming, 

nutrition, and selective breeding. For example, if the animals in the dataset have been 

offered identical feed, the estimated variation can be attributed to genetic and 

environmental influences. Conversely, if the animals have been offered different diets 

or feeding schedules, the estimated variation includes the influence of nutrition. 

Moreover, if two or more datasets are considered from groups with distinct diets but 

similar variation in genetics and environment, then differences in the influence of these 

diets can be assessed and tested in a way similar to regression analysis but without 

the associated parametric assumptions. The same holds for comparisons among 

groups that are genetically distinct. 

Such information about variability can help, for example, to quantify trait heritability, to 

implement targeted feeding and preventive treatments, or to make more realistic 

evaluations of livestock value, losses, and costs. For example, this approach was used 

to evaluate the economic gains from adopting alternative strategies for pig allocation 

to finishing pens (Filipe et al., 2018b). Applications can also be made to real-time 

prediction: given a trait observed over a window of time, its future average and 

population confidence interval can be predicted based on the earlier observations. For 

example, the prediction of the next-week’s intake and performance of a group can be 

carried out in this way. 

While the results focused on specific species and traits, this modelling approach 

applies to any livestock species and genetic line and to any set of traits for which 

individual observations are available across a group. Therefore, on one hand, the 

approach allows the identification of commonalities and differences across species and 

lines. On the other hand, the approach allows consideration of other types of traits that 

affect production. For example, the degree to which production efficiency and 

robustness under disturbance are mutually exclusive or not, can be quantified by 

examining the joint variation and overlap of these traits in the same way that 

simultaneous traits of sows and hens were examined here. 
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7. Conclusions 

A modelling approach was developed to quantify the phenotypic variation in animal 

traits within populations using empirical data from livestock herds or flocks, as well as 

to predict traits and their variation outside the range of empirical observation. The 

approach can also be used to quantify and predict trait variation in artificial data from 

simulation models. The approach has generic applications, including precision 

livestock farming, nutrition, and selective breeding in animal populations. First, the 

approach applies to any animal traits, although it was demonstrated here for growth 

and reproduction traits. Second, the approach applies to observable traits as well as 

to non-observable traits that can be related to the observed traits through a quantitative 

model. Third, the approach applies to monogastric livestock species as well as to any 

livestock species for which individual data are available. The advantages of the 

approach are its flexibility, i.e. no reliance on potentially-inaccurate assumptions about 

the form of variation and correlation of traits across individuals; its economy and speed 

of computation; and its applicability to small as well as to large animal sample sizes. 

Given the broad range of potential uses of this approach in the implementation of 

precision livestock farming, and the resulting benefits of precision livestock farming for 

producers, for animal welfare and for the environment, the approach has the potential 

to contribute to the broader aim of delivering greater sustainability and robustness in 

intensive livestock production. 
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8. Annexes 

8.1 Annex 1: Diagnostics of model fitting and data outliers 

The predictions of trait variability in a population (Figure 1) are the ultimate purpose of 

the current analysis; in general, no further results need to be examined. However, the 

user of the method may wish to verify the quality of the model fitting or to identify and 

tackle potential outlier individuals in the population.  

 Parameter distribution. The outcomes of fitting a Gompertz curve to the live 

weight of each individual (Figure 1A) are point estimates of the two parameters of 

this growth model (i.e., mature size and growth rate). The population distribution of 

these model-derived traits and the respective confidence intervals can be 

examined, either as a joint distribution or as separate marginal distributions (Figure 

A2.A-C).  

 Goodness-of-fit. Goodness-of-fit was quantified by the coefficient of determination 

R2 and distribution of residuals (i.e., deviations of the data with respect to the model 

(Figure A1.E-F). The overall goodness-of-fit was high for most individuals, but a 

few individuals show a residual trend indicating that their specific growth conditions 

may have been disturbed and may not be describable by the proposed growth 

curve (Figure A1.D). 

 Outliers. Some individual growth trajectories stand out with respect to the majority 

(Figure 1A), which could have been caused by a variety of factors, including 

disease. For these individuals, growth conditions may have been affected by 

extreme perturbations or observational errors, in which case the growth model and 

the fitting approach may no longer be appropriate. Consequently, the parameter 

estimates may not be compatible with their biological interpretation, and the 

resulting fitted curve may be an outlier in the population distribution model curves. 

We have used the option of tackling outliers by imposing presumed ‘acceptable’ 

bounds on the parameter ranges prior to their estimation; these ranges are reflected 

in the edges of Figure A1.A. Other approaches, such as the removal of identified 

outliers could be implemented.  

 Resampling. The effect of resampling individuals from the original sample has the 

effect of increasing the relative counts and stabilising some of the quantile 

estimates (Figure A1.G-H). 
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Figure A1. Growth in boars – Diagnostics of model fitting and outliers. The outcomes of fitting 
the Gompertz curve, Y=a*(Y0/a)^{exp(-(X-X0)/b)), to each individual dataset (X,Y), where 
parameters (a,b) are the mature weight and time scale of growth (1/rate of growth), and vectors 
X and Y are the sequences of observed age and live weight: A) Population joint distribution of 
the point estimates of (a,b) and associated 95% confidence intervals. B-C) Marginal frequency 
distributions of parameters a and b. D) Fitted curved and datasets. E) Sequential residuals 
(deviations of the date from the model) for each individual. F) Frequency distribution of 
residuals for each individual. G-H) Population distribution of parameters in 1000 large random 
re-sample. 
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