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1. Summary 

Improving robustness for farm animals is seen as a new target of breeding strategies. 

However, robustness is a complex trait and not measurable directly. The objective of 

this deliverable is to quantify and characterize (elements of) robustness in growing 

pigs. Robustness can be characterized by examining the animal’s response to 

environmental perturbations. Although the origin of environmental perturbations may 

not be known, its effect on the animal can be observed, for example through changes 

in voluntary feed intake. Perturbations such as heat stress and sanitary challenges 

typically have a negative and transitory effect on the voluntary feed intake. We 

developed a generic model and data analysis procedure to detect these perturbations, 

and subsequently characterize the feed intake response of growing pigs in terms of 

resistance and resilience as elements of robustness when faced with perturbations. 

We hypothesize that there is a target trajectory curve of cumulative feed intake, which 

is the amount of feed that a pig desires to eat when it is not facing any perturbations. 

Deviations from this target trajectory curve are considered as a perturbation, which can 

be characterized by its duration and magnitude. It is also hypothesized that, following 

a perturbation, animals strive to regain the target trajectory curve of cumulative feed 

intake. A model based on differential equations was developed to characterize the 

animal’s response to perturbations. In the model, a single perturbation can be 

characterized by four parameters. The start and end times of the perturbation are 

“imposed” by the perturbing factor (e.g., a period of heat stress) while two other 

parameters describe the resistance and resilience potential of the animal to the 

perturbing factor. One parameter describes the immediate reduction in daily feed 

intake at the start of the perturbation (i.e., a “resistance” trait) while another parameter 

describes the capacity of the animal to adapt to the perturbation through compensatory 

feed intake to re-join the target trajectory of cumulative feed intake (i.e., a “resilience” 

trait). The model has been employed successfully to identify the target trajectory of 

cumulative feed intake in growing pigs and to quantify the animal’s response to a 

perturbation by using feed intake as the response criterion. 

The model has been developed at INRA and benefitted from feedback from frequent 

WP3 meetings and annual project meetings (especially from Kaposvár University, 

Newcastle University, Topigs Norsvin, and IRTA).  
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2. Results 

2.1 General description of the model 

Perturbations such as heat stress or sanitary challenges typically have transitory 

impacts on pigs during the growing period, resulting in reductions in feed intake and 

body weight gain. Although the cause of a perturbation is not always known, the 

consequences in terms of feed intake and body weight gain can be observed. Because 

of the rapid development in monitoring technologies, feed intake can be recorded in 

individual pigs with a very high frequency (i.e., up to the level of meal intake patterns). 

In this study, we focused on changes in voluntary feed intake patterns as indicators of 

perturbations. We considered perturbations that lasted at least for several days and 

that might have a relatively important effect on the performance of the pig. In addition, 

at this stage we chose not to (try to) identify the origin of the perturbing factor to “let 

the data speak for itself”. 

We hypothesized that the actual daily feed intake of a pig is the combination of a target 

trajectory curve (i.e., the amount of feed a pig desires to consume in a non-perturbed 

condition) and a change in feed intake due to a perturbation. During a perturbation, the 

feed intake of the pig will deviate from the target trajectory, but once the perturbation 

is over the pig will strive to increase its feed intake to re-join the target trajectory. We 

therefore assumed that compensatory feed intake might exist. We only targeted 

perturbations that have a negative impact on feed intake. Perturbations that result in 

an increase in feed intake (e.g., cold stress, immunocastration, or providing a diet with 

low energy content) are beyond the scope of this study. 

Classical statistical techniques may be difficult to use in our approach because of the 

potentially large number of model parameters to be estimated. We therefore used a 

step-wise data analysis procedure in which first the target trajectory curve of feed 

intake is identified. Deviations of the actual feed intake from the target trajectory then 

represent the potential consequence of a perturbation. A classification process is then 

performed to identify the most important deviations. Lastly, a model based on 

differential equations is used to quantify the resistance and resilience of the pigs to the 

perturbation. 
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Identification of the target trajectory feed intake from actual feed intake data is a key 

element in the procedure. As indicated before, modern feeding stations can provide 

feed intake data very frequently. Although daily feed intake (DFI) is usually used as a 

production trait, we felt that DFI was not suitable to describe a target trajectory. Firstly, 

DFI for individual pigs is inherently variable from one day to another. Secondly, 

because of the existence of a target trajectory feed intake, the overall reduction in feed 

intake during the perturbed period should be compensated for by an equal increase in 

feed intake during the recovery period, due to compensatory feed intake. This would 

make the modelling of DFI very complicated. In contrast, cumulative feed intake (CFI) 

data do not suffer from these drawbacks because CFI data are much less variable and, 

more importantly, allow for an easier representation of a trajectory. In the absence of 

a perturbation, actual CFI would be similar to the target CFI. During a perturbation, the 

actual CFI would deviate from the target CFI (i.e., it would increase to a lesser extent) 

and, once the perturbing factor is over, the animal would seek to re-join the target CFI 

through compensatory feed intake, without surpassing it in a systematic way. 

We acknowledge that many of the steps in the procedure that we propose are arbitrary 

and may be subjects to criticism. This concerns not only the choice of feed intake as 

the (only) response criterion, but also the model choices for the target trajectory feed 

intake and for the feed intake during and after the perturbed periods, and the step-wise 

method to quantify resistance and resilience traits. The objective of this deliverable is 

to propose the overall procedure, detailed elements of which can be adapted as judged 

necessary. 

2.2 Data preparation 

Data collection 

A dataset of daily voluntary feed intake records of 116 growing-finishing pigs was used 

to calibrate the model. Feed and water were provided ad libitum. An automatic feeder 

recorded individual feed intake and data were averaged on a daily basis. 

Missing data 

Missing data is defined here as the period of one or more days for which there are no 

feed intake records for an animal. Missing data may be caused by a power outage, an 
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insensitive sensor, or loss of an identifying ear tag. Ignoring missing data would result 

in inappropriate CFI data, because the CFI curve would be shifted downward and the 

missing data could be identified as a perturbation. To correct for missing data we 

assumed that there is a continuous pattern of CFI data just before and after the period 

of missing data, characterized by a downward shift due to the missing data. When data 

were missing for n days, data for n+1 days before and after the period of missing data 

were used to perform a quadratic regression with a model that included a downward 

shift in CFI associated with the period of missing data. The estimated downward shift 

in CFI was used to calculate the values of missing feed intake. 

2.3 The target trajectory CFI 

The target trajectory CFI is the amount of feed a growing pig desires to eat when it is 

in a non-perturbed condition. In this study, we describe the target trajectory CFI by an 

empirical polynomial function of time, without pretending a mechanistic cause. The 

reason for this choice is that feed intake is recorded by time by the auto-feeders. 

Although feed intake has been often described as a function of body weight, it is more 

difficult to obtain the latter trait on a frequent basis. Moreover, describing feed intake 

as a function of body weight raised the issue of cause and effect (i.e., “Do animals eat 

because they want to grow?” or “Do they grow because they eat?”), whereas time is 

an independent variable. High-order polynomial functions are very flexible, but the 

flexibility may identify perturbations as being part of the target trajectory. Preliminary 

analysis using a large data set indicated that describing CFI data by a third-order 

polynomial in combination with a perturbation model could result biologically unrealistic 

predictions for DFI. Therefore, we chose a quadratic function as a basis to describe 

the target CFI, which implies that the target DFI (being the first-derivative of CFI) is 

described by a linear function of time. To improve and to control the flexibility of the 

function, we assumed that DFI should be either increasing or remain constant (i.e. a 

so-called linear-plateau model). The target CFI is therefore described by a 

quadratically or linearly increasing function of time:  

 When t < Xs: Target_CFI(t) = a + b·t + c·t² (E.1) 

 When t ≥ Xs: Target_CFI(t) = (a + b·Xs + c·Xs²) + (b + 2·c·Xs) * (t – Xs) (E.2) 
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where “t” is the age of the animal (days) and Target_CFI is the target CFI at day “t”. 

The parameters a, b, and c are the classical parameters of a polynomial function, and 

Xs is the day when the quadratic segment of the curve changes to the linear segment. 

 The parameters a, b, and c may be difficult to interpret biologically. Equation E.1 

was therefore reparametrized to include the estimated age at which CFI=0 (i.e., X0), 

the estimated CFI at the last observation (CFIlast), and the estimated CFI at the 

midpoint (i.e., CFImid-point, determined halfway between X0 and the last observation). 

Equation E.2 includes one parameter more than equation E.1 (i.e., Xs), and was 

parameterized to include CFIs, rather than CFImid-point. This parametrization facilitates 

the interpretation of model parameters. The model of the target CFI therefore includes 

three or four parameters to be estimated (i.e., X0, CFIlast, and CFImid-point for E.1 and X0, 

CFIlast, XS, and CFIS for E.2).  

 When applying a linear-plateau function to estimate the target CFI, we 

encountered two possible problems for DFI. Firstly, the linear segment sometimes had 

a very modest negative slope, which would mean that the DFI decreased with 

increasing age. In that case, a constant value for DFI was assumed (rather than a 

linear-plateau model), resulting in a linearly increasing function for CFI. Secondly, Xs 

was sometimes estimated to be very close to either the first or the last observation and 

the linear-plateau curve would resemble a linear curve. A linear function was then used 

to describe DFI, resulting in a quadratic function for CFI.      

2.4 Fitting the target trajectory CFI to the data 

Fitting the target trajectory CFI to all data by the above-mentioned procedure results 

in an underestimation of the real target trajectory CFI, because it includes feed intake 

data during perturbation periods. We therefore used a fitting procedure to successively 

eliminate data that could result from perturbed periods. Data that were consistently 

below the fitted curve could be due to perturbations and an auto-correlation test was 

used as a selection criterion. If there was a significant autocorrelation for the residuals 

(i.e., the difference between the observed and predicted values), the data with negative 

residuals were (temporarily) removed from the dataset. The fitting procedure was then 

repeated on the resulting dataset until the autocorrelation of the residuals was no 

longer significant. Compared to fitting the curve to the original dataset of CFI, the 
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procedure results in moving the CFI curve upwards, while fitting to fewer data 

compared to the original dataset. Preliminary analysis indicated that a significant 

autocorrelation remained until few data remained. This is due to the existence of small 

oscillations in CFI, while these oscillations are not necessarily the result of 

perturbations. To ensure that the target CFI was estimated with a reasonable number 

of data, the fitting procedure was terminated when there was no autocorrelation among 

the residuals, or when at least 20 observations were remaining.  

2.5 Identifying perturbations 

Once the target trajectory CFI is identified, deviations between this curve and 

the actual CFI data can be used to quantify perturbations. As indicated above, small 

(natural) oscillations in feed intake patterns seem to exist and we only aim to quantify 

the most important deviations that are the result of perturbations. These perturbations 

can be characterized by the duration and magnitude of the deviation from the target 

CFI. The duration of each deviation is determined by the number of days in which the 

actual CFI data are below the target trajectory curve. We considered a deviation as a 

perturbation if it lasted at least 5 days, to ensure the correct identification of the 

parameters of the perturbation model. The magnitude is calculated by the maximum 

reduction of a deviation from the target trajectory. Because CFI is increasing 

continuously, deviations from the target CFI were expressed as a percentage and an 

arbitrary value of 5% was set as a threshold value to identify a perturbation. In 

summary, the actual CFI data was compared to the target CFI curve and any period in 

which the actual data deviated from the target CFI for more than 5 days and for more 

than 5% was considered the result of a perturbation. Other deviations were considered 

part of naturally occurring oscillations in feed intake patterns.   

A B-spline function was fitted to all CFI data. This function was chosen because 

of its flexibility in capturing different shapes of deviations.  The difference between the 

B-spline and target CFI was calculated to identify the number of perturbed periods, the 

approximate start and end, and the magnitude of each perturbation. The factors 

controlling smoothness of the B-spline were arbitrary chosen by visualization.  

We decided not to consider deviations that occurred only during the first week 

because pigs may encounter many stressors then, and deviations from the target CFI 
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of more than 5% are quite common during the first week. However, deviations that 

started during the first week and for which the selection criteria of duration and 

magnitude continue to hold during the second week were considered the result of a 

perturbation.  

2.6 Modelling the response to a perturbation 

Once the perturbed period is identified, each single perturbation was characterized by 

a system of differential equations. The two main driving forces of the model are the 

impact of the perturbing factor and the adaptation capacity of the pig. We assumed 

that a perturbation would have a negative and constant impact on the DFI of the pig 

for the duration of the perturbing factor (Figure 1, red line). The negative impact of a 

perturbing factor is therefore characterized by three model parameters: the start and 

the end of the perturbing factor, and the instantaneous response of the pig to the 

perturbing factor. The reduction in DFI will result in that the actual CFI will start to 

deviate from the target CFI. The ratio between the actual CFI and the target CFI is 

used as a driving force to model the adaptation capacity of the pig (Figure 1, green 

line). The change DFI (compared with the target DFI) is the sum of the mechanisms 

depicted by the red line (resistance) and the green line (resilience and compensatory 

feed intake). During the perturbed period, the resilience mechanism limits the effect of 

the perturbing factor. As can been seen from Figure 1, at the end of the perturbed 

period, the negative effect of the perturbation (-80%) is partially compensated for by 

the resilience (+54%). Once the perturbing factor is over, the resilience mechanism 

induces compensatory feed intake so that the actual CFI can regain the target CFI. 

The area under the curve of the green line equals that of the red line, ensuring that the 

animal seeks complete recovery.   
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Figure 1. Mechanisms that determine the response of a pig to a single perturbation. 
The perturbation is assumed to occur between days 85 and 132 of age. The red line indicates 
the constant and negative impact of the perturbation on the pig, resulting in a 20% reduction 
in DFI. The green line panel represents the resilience capacity (during the perturbation) and 
compensatory feeding of the pig (after day 132). 

As indicated in Figure 1, resistance and resilience operate at the level of DFI, 

but the control of resilience and compensatory feed intake is regulated at the level of 

CFI (Figure 2). The DFI encompasses three elements: the target DFI, the impact of 

perturbation on DFI, and the response of the pig to the perturbation. In the absence of 

a perturbation, the actual DFI is equal to the target DFI ( in Figure 2).  

The initiation of a perturbation ( in Figure 2) has a negative and constant effect on 

DFI and, because of the reduction in DFI, the actual CFI curve starts to deviate from 

the target CFI. The ratio between the actual CFI and the target CFI triggers the pig’s 

resilience mechanism in a proportional way ( in Figure 2). The smaller the ratio 

between the actual and the target CFI, the greater will be the resilience mechanism for 

DFI. Once the perturbing factor is over ( in Figure 2), its effect on DFI disappears, 

but the CFI ratio will still be smaller than one. This results in compensatory DFI where 

the actual DFI will be greater than the target DFI feed intake that, in turn, results in that 

the actual CFI will approach the target CFI.  
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Figure 2. General mechanism of a model that quantifies the pig’s response to a perturbation. 
Solid arrows indicate causal relationships in the model, the double arrow indicates the flux, 
and the dashed arrow indicates the disappearance of perturbing factor. Numbers indicate the 
response’s steps of a pig when a perturbation occurs. 

The perturbation model is conceptualized in a way that the impact of a single 

perturbation on the feed intake of the pig and its response can be characterized by four 

parameters. Two parameters indicate the start and end times of the perturbing factor, 

while the third parameter describes the constant negative impact of the perturbation 

on DFI (red line in Figure 1). The fourth parameter (k) is the marginal response in DFI 

due to a change in the ratio between the actual and the target CFI, and describes the 

capacity of the animal to adapt to the perturbation through resilience and 

compensatory feed intake (green line in Figure 1). The DFI is affected in a proportional 

way by the ratio between the actual and target CFI and the parameter “k”.  

The model equations are written as follows: 

 Actual_DFI(t) = Target_DFI(t) × (1 – perturbation(t) + resilience(t) ) (E.3) 

The “perturbation(t)” takes a constant value (e.g., an 80% reduction in DFI) between 

the start and end time of the perturbing factor, and is zero otherwise. The “resilience(t)” 

is described by: 

 Resilience(t) = (1 - Ratio) × k = (1 - Actual_CFI(t) / Target_CFI(t)) × k (E.4) 
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The  target DFI and target CFI are given by equations E.1 and E.2, while the actual 

CFI is the result of integrating the actual DFI between the time when the estimated CFI 

equalled zero (X0) and the last observation (i.e., Xlast), i.e.,: 

Actual_CFI(t)   =  ∫ Actual_DFI(t)
Xlast

X0
 (E.5) 

2.7 Statistical analysis 

All statistical and optimization procedures of the model have been performed in R 

software version 3.5.0 (http://cran.r-project.org/). To account for scale differences in 

CFI, a weighted regression procedure was used (using (1/CFI)² as statistical weight) 

to estimate the parameters of the target CFI (equations E.1 and E.2). The optimization 

was performed using non-linear function nlsLM of the package “minpack.lm”. The test 

for auto-correlation was performed by Wald-Wolfowitz runs test. To identify 

perturbations from the CFI curve, the package “fda” was utilized. To characterize the 

pig’s response to a perturbation, the differential equations E.4, E.5, and E.6 were 

solved using the ode function of the “desolve” package with an integration step size 

(dt) of one day. The optimization was conducted by the optim function. 

2.8 An example of “the model at work” 

Figure 3 is an example of the change in DFI for an individual animal. It illustrates the 

large day-to-day variation in DFI, but it also shows a strong reduction in DFI 

somewhere between 70 and 130 days of age.  

http://cran.r-project.org/
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Figure 3. Daily feed intake of an individual pig. 

 

 
Figure 4. Cumulative feed intake of an individual pig and modelling results. Observations are 
given as individual points, the target trajectory of CFI by the dashed line, and the fit of the 
model including the target trajectory and the perturbation module by the solid line. 

The data in Figure 4 is the same as that of Figure 3, but feed intake is now expressed 

on a cumulative basis. The dashed line indicates the estimated target trajectory of CFI 
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using a quadratic function of age. This target trajectory of CFI resulted applying the 

model first to all the data, followed a test for autocorrelation of the residuals and, if 

significant, removal of the data points for which the residuals were negative. The 

procedure was repeated until the autocorrelation was no longer significant or until 20 

data points remained. As can be seen in Figure 4, the estimated target trajectory of 

CFI is determined to a great extent by the highest data points. The functional data 

analysis procedure was then used to estimate the approximate duration and magnitude 

of the perturbation. The perturbation model was then fitted to the data to estimate the 

parameters of the perturbation model (i.e., the start and end of the perturbation period, 

the instantaneous reduction in DFI during the perturbation period, and the resilience 

parameter “k”. The parameters of the model are given below: 

Target trajectory of CFI Perturbation model 

X0, days 61.7 Xstart of perturbation, days  85.4 
CFI at the last observation, kg 240.1 Xend of perturbation, days 132.0 
CFI at the midpoint, kg 111.0 Instantaneous reduction in DFI 80% 
  Resilience parameter k  2.3 

Although the quadratic model can be described as CFI = a + b·age + c·age2, the 

parameters a, b, and c were re-parameterized to include the age at which the estimated 

CFI equals zero (X0), the estimated CFI at the last observation (i.e., at 210 days of age 

here), and the estimated CFI at the midpoint (i.e., at (210+61.7)/2= 135.85 days of age 

here). The start of the perturbation was estimate at 85.4 days of age and lasting until 

132 days of age. At the start of the perturbation, DFI was reduced by 80%, and this 

negative effect on the DFI continued to be exerted during the perturbed period. 

Although the instantaneous reduction in DFI will be 80%, the reduction will be less with 

progressing time because of the resilience mechanism (driven by the ratio between 

the actual CFI and the target CFI). The resilience parameter (k = 2.3) indicates that if 

the actual CFI is 1% below the target CFI, the pig would strive to eat 2.3% more 

compared to the target DFI (i.e., 0.01 * 2.3 = 2.3%). At 132 days of age, the negative 

effect of the perturbing factor will cease, but the resilience mechanism remains active 

because the actual CFI is still well below the target CFI. With time progressing, the 

actual CFI will gradually approach the target CFI through compensatory feed intake.  
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3. Conclusions 

A mathematical and statistical data analysis procedure was developed to characterize 

the response of an animal to a perturbation. The response on feed intake was 

described here, but the method can be extended to quantify other response traits. The 

different steps in the analysis procedure can easily be adapted by end-users. For 

example, in the procedure given here, the response to a perturbation of unknown origin 

was described, but the origin of some perturbations (e.g., heat stress) can be easily 

identified. Moreover, high temperatures affect all animals in the building, but the way 

they respond to it can vary from one animal to another. Differences in the response of 

animals to a common stressor can be quantified by adapting the procedure. The 

quantification of resistance and resilience traits has a great potential for use in animal 

breeding programs to improve efficiency and robustness.  

The analysis procedure will be submitted for publication in a peer-reviewed journal and 

the accompanying R-script will be deposited in a public repository. 

 

4. Annexes 

The R-script of the deliverable is given in the annex, including a description of the 

different steps. 



Detection and characterization of the response of a
growing pig to a single perturbation
Hieu Nguyen Ba, Masoomeh Taghipoor, Jaap van Milgen
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Note:

• Authors of this documment are currently employed by French National Institute for Agricultural
Research (INRA) at PEGASE and MoSAR units.

• The project receives funding from Feed-a-Gene and INRA-ACCAF programs.
• This R-script describes the process of a data analysis procedure and modelling to detect and characterize

the response of an individual pig to perturbation.
• The process includes 1 step of data preparation and 4 steps of data analysis.

Step 0: Data preparation

The purpose of this step is to import data into R and for the treatment of missing data

1. Set a working directory and load required packages

Note: Make sure to install all the packages below if you have not had them yet.
#To remove the hisory and reset the whole project
rm(list=ls(all=TRUE))

#Set working directory
setwd("C:/Users/hnguyenba/Dropbox/INRA/Modelling_Perturbation/Feed-a-gene/Deliverable3.4")

#Packages
##Data manipulation and graph
library(ggplot2)
library(dplyr)
##Estimate parameters by NLS
library(minpack.lm)
library(nlstools)
library(proto)
library(nls2)
##Functional Data Analysis
library(fda)
##Functions for solving differential equations
library(deSolve)

2. Import data intoto R and attribute a name

JRP_NA.0<- read.csv("RFI_JRP.csv", header =TRUE, sep=";", dec=",")

1
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3. Homogenous missing data types

There are two types of missing data:

• One or several rows are missing
• One or several days recorded as (.)

We homogenize two types of missing data into one (missing row) by omitting the rows containing missing feed
intake data. Therefore, one homogeneous treatment can be applied later on for both types of missing data.
# Replace missing values by NA (NA means not available)

JRP_NA.0[JRP_NA.0 == '.'] <- NA
#Obmit all places containing missing data (for further treatment)

JRP_NA<-JRP_NA.0[!is.na(JRP_NA.0$FEED_INTAKE),]

4. Correct and clean data

Correct data:

• ID of pig has to be in factor
• Age and Feed intake of the pig have to be in numeric
JRP_NA$ANIMAL_ID <- as.factor(JRP_NA$ANIMAL_ID)
JRP_NA$AGE <- as.numeric(JRP_NA$AGE)
JRP_NA$FEED_INTAKE <- as.numeric(as.character(JRP_NA$FEED_INTAKE))

Clean data:

• Only information of animal ID, Age (days) and daily feed intake (DFI) are needed
JRP_NA <- JRP_NA[, c(-4,-5)]

• Choose one animal to analyse by its order number
#Order number of the animal
idc = 66 #Example: of LM: 41, 42; QLM: 33; QDR: 63
i = ID[idc]

#extract dataset for the chosen animal
Data <- JRP_NA[JRP_NA$ANIMAL_ID == i,]

#Age vector associated with the chosen animal
Age.plot = Age[Pig_ID == i]

#DFI vector associated with the chosen animal
DFI.plot = DFI[Pig_ID == i]

Calculate cumulative feed intake (CFI) from DFI data
CFI.plot = c()
CFI.plot[1] = DFI.plot[1]

for(j in 2:length(Age.plot)){
CFI.plot[j] <- CFI.plot[j-1]+DFI.plot[j]

}

Data overview:
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• Dataset (six first rows)

## Age.plot DFI.plot CFI.plot
## 1 68 2.546 2.546
## 2 69 2.605 5.151
## 3 70 2.708 7.859
## 4 71 2.659 10.518
## 5 72 2.371 12.889
## 6 73 2.647 15.536

Step 1: Missing Data Treatment

Missing data is defined here as the period of one or more days for which there are no feed intake records for
an animal. Missing data may be caused by a power outage insensitive sensor or loss of an identifying ear
tag. Ignoring missing data would result in inappropriate CFI data, because the CFI curve would be shifted
downward and the missing data could be identified as a perturbation.

Therefore, missing data needs to be estimated before doing further analysis.

1.1. Special cases of missing data

Before detecting and estimating missing data we have to consider some special cases of missing data:

• Case 1: if there is missing data in the beginning and number of days needed before missing data is not
enough for estimation, the data from the beginning until missing data is removed from the dataset,
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e.g. if the dataset starts at day 80 and the first missing day is at day 82 so all these data are removed
from the dataset (the dataset then starts at day 83)

• Case 2: if there are several series of missing data and the number of available data between two missing
series is not enough for estimation (e.g. there are missing data at days 104, 105, 107 and 108) they are
merged with each other and are considered as one missing series

• Case 3: if there is missing data in the end and number of days needed after missing data is not enough
for estimation the data from the missing data onward is removed from the dataset, e.g. if the dataset
ends at day 188 and the last missing day is at day 185 and 186, all these tree data removed from the
dataset (the dataset then ends at day 184)

1.1.1. Detect missing data

a. Detection of missing lines
#Expected number of rows
Exp.row <- max(Age.plot) - min(Age.plot)+1

#observed number of rows
obs.row <- as.numeric(length(Age.plot))

#number of missing days
NumMissRow <- Exp.row - obs.row

#To locate the missing rows
#if age of row_(n+1) - row_n > 1 then n is a missing row
A1 <- Age.plot[1: length(Age.plot)-1] #
A2 <- Age.plot[2:length(Age.plot)]
A3 <- A2 - A1

#Day before missing series of data
MissRow <- as.data.frame(JRP_new[A3!=1,])
Missdays <- MissRow$Age.plot

# Extract A3 values different to 1
A4 <- A3[A3!=1]

if(length(A4) ==0){
paste( "There are 0 missing row from data of the pig", i)

} else {
paste( "There are", length(A4), "missing row(s) from data of the pig", i)

}

## [1] "There are 0 missing row from data of the pig 5596"

If there is no missing Data, we can skip steps below; otherwise, we continue

## [1] "skip"

b. List of ages associated with missing rows
#If there is no missing Data, we can skip steps below
if(length(A4) == 0){

"skip"
} else{
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#An empty object (here a list) that will gather
# all missing rows for a given pig
MissAgeT <- list()

#JRP_new with no missing rows
#This dataframe will be used to compare with JRP_new_Final if needed
JRP_new_Final <-JRP_new

# Missing ages in the dataframe
if (length(A4)>0){

for (ii in 1:length(A4)){
MissAgeT[[ii]] <- seq(Missdays[ii]+1,Missdays[ii]+A4[ii]-1,1)

}
}
paste( "Age (days) of missing data:", MissAgeT)

}

## [1] "skip"

1.1.2. Classifying missing data

A while loop is created to automatically classify all missing data in dataset.

## [1] "skip"

While loop:
#If there is no missing Data, we can skip steps below
if(length(A4) == 0){

"skip"
} else{

ki=1 #first value to start while loop

while(ki< length(MissAgeT)+1 ){
k=ki
MissAge = MissAgeT[[k]] #Missing rows at position k

#----------------------------------------------------
# Extract age and CFI before and after missing data
# for the interpolation via linear regression
#----------------------------------------------------

L = as.numeric(length(MissAge))

#number of data before = length(missing rows)+1
b1l[[k]] <- seq(MissAge[1]-(length(MissAge)+1), MissAge[1]-1, 1)

#number of data after missing age
b2l[[k]] <- seq( MissAge[length(MissAge)]+1,

MissAge[length(MissAge)]+
(length(MissAge)+1), 1)

#number of missing rows to be replaced at the end
MissAge2 = MissAge
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#----------------------------------------------------
# Special cases
#----------------------------------------------------

#1. When number of data before missing row is not enough for estimation
#Ex. 88, 89,..., 92, 93
#we remove all the rows until missing data (Age now starts at day 92)

if(b1l[[k]][1] < Age.plot[1]){
JRP_new <- JRP_new[!JRP_new$Age.plot %in% seq(Age.plot[1],

MissAge2[length(MissAge2)],
by=1),]

MissAgeT[[1]] <- NULL
MissAge = MissAgeT[[k]]
MissAge2 = MissAge

}

#2. when there are not enough given rows between two series of missing rows
#Ex. 108, 109, 110, 112, 114, 115, 116
#we merge these two missing rows with the rows between
#when number of missing row in a serie > 1

if(length(MissAgeT)>1 && k < length(MissAgeT)){
for(ii in 1:(length(MissAgeT)-1)){

if(k + ii <= length(MissAgeT)){
if(MissAgeT[[k+ii]][1] - MissAge[length(MissAge)] <= length(MissAge)+1){

(MissAge = c(MissAge, seq(MissAge[length(MissAge)]+1,
MissAgeT[[k+ii]][1]-1,1),
MissAgeT[[k+ii]]))&&

(b2l[[k]] <- seq( MissAge[length(MissAge)]+1,
MissAge[length(MissAge)] + (length(MissAge)+1),
1)) &&

(b1l[[k]] <- seq(MissAge[1]-(length(MissAge)+1), MissAge[1]-1, 1))&&
(ki=k+ii) &&
(MissAge2 = MissAge)

}
}

}
}

#3. When number of data after missing row is not enough for estimation
#Ex. 179, 180,..., 183, 184 we remove all the rows
# from missing data (Age is now just until day 180)

if(b2l[[k]][length(b2l[[k]])] > Age.plot[length(Age.plot)]){
JRP_new <- JRP_new[!JRP_new$Age.plot %in%

seq(MissAge2[1],
Age.plot[length(Age.plot)],
by=1),]

MissAgeT[[length(MissAgeT)]] <- NULL
break

}
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#----------------------------------------------------
# Re-calculate CFI after filtrating process
#----------------------------------------------------

#Age vector
Age.plot = JRP_new$Age.plot[! JRP_new$Age.plot %in% MissAge2]

#DFI vector
DFI.plot = JRP_new$DFI.plot[JRP_new$Age.plot %in% Age.plot]

#CFI
CFI.plot = c()
CFI.plot[1] = DFI.plot[1]
for(j in 2:length(Age.plot)){

CFI.plot[j] <- CFI.plot[j-1]+DFI.plot[j]
}

#----------------------------------------------------
# New dataset with removed NA only containing Age, DFI and CFI
#----------------------------------------------------

JRP_new <- as.data.frame(cbind(Age.plot,DFI.plot, CFI.plot))

ki = ki+1 #next series of missing rows

} #end of WHILE loop
}

## [1] "skip"

1.2. Missing data estimation

To correct for missing data we assumed that there is a pattern for CFI data before and after the period of
missing data, characterized by a downward shift due to the missing data. When data were missing for n days,
data for n+1 days before and after the period of missing data were used to perform a quadratic regression with
a model that included a downward shift in CFI after the period of missing data. The estimated downward
shift in CFI was used to replace missing values.

1.2.1. Estimating missing data

We need to empty the lists before we run the new estimation (similar to previous step).

## [1] "skip"

Therefore, the while loop is run again (similar to previous step).

## [1] "skip"

Missing age and its feed intake value

## [1] "skip"
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1.2.2. Remove the last day from dataset

Given that animals are normally fasted one day before sending to slaughter, the feed intake information of all
pig in the last day was eliminated from the dataset.

• Before last row is removed

## Age.plot DFI.plot CFI.plot
## 139 206 3.040 232.661
## 140 207 2.852 235.513
## 141 208 3.294 238.807
## 142 209 2.347 241.154
## 143 210 3.108 244.262
## 144 211 0.736 244.998

• Remove information of the last day:
JRP_new = JRP_new[c(1:length(JRP_new$Age.plot)-1),]

• After last row is removed:

## Age.plot DFI.plot CFI.plot
## 138 205 1.881 229.621
## 139 206 3.040 232.661
## 140 207 2.852 235.513
## 141 208 3.294 238.807
## 142 209 2.347 241.154
## 143 210 3.108 244.262

Step 2: Identify the target trajectory curve of CFI

• We hypothesize that there is a target trajectory curve (TTC) of CFI, which is the amount of feed that
a pig desires to eat when it is not facing any perturbations. This TTC is then used as a benchmark for
detecting and perturbation.

• The actual CFI curve is assumed to be a combination of the target trajectory curve and a change in
feed intake due to a perturbation. During a perturbation, the feed intake of the pig will deviate from
the target trajectory, but once the perturbation is over the pig will strive to increase its feed intake to
re-join the target trajectory.

• Therefore, this target trajectory can be identified by excluding from the actual CFI curve the feed
intake in periods during which the pig could have been perturbed.

#===============================================================
# DATA PREPARATION
#===============================================================

#Functions
source("abcd.R")

#Order number of Animal_ID
ID = unique(as.factor(No.NA.Data$ANIMAL_ID))

#Load data
Data = No.NA.Data[No.NA.Data$ANIMAL_ID == ID,]

####### Create data frame of x (Age) and y (CFI) ########
x <- as.numeric(Data$Age.plot)
Y <- as.numeric(Data$CFI.plot)
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Z <- as.numeric(Data$DFI.plot)
Data.xy <- as.data.frame(cbind(x,Y))

2.1. Finding the suitable function for TTC curve:

A quadratic-linear function (QLM) is chosen as the function to describe TTC curve of CFI:

When X < Xs:
Y = a + bX + cX2

When X ≥ Xs:
Y = (a + bXs + cXs2) + (b + 2cXs) ∗ (X˘Xs)

Note: in the deliverable, X is called t and Y is Target_CFI(t)

• Where X is the age of the animal (day)
• Y is the CFI at day X
• The parameters a, b and c are the classical parameters of a polynomial function
• Xs the day when the quadratic segment of the curve changes to the linear segment

The parameters a, b, and c were reparametrized to:

• Age at which CFI is equal 0 (X0)
• Xs
• Estimated DFI and CFI at age Xs (DFIs)
• Estimated DFI age Xs (CFIs)

Note: This is a little different from what is described in the deliverable. In the deliverable, we explained
that the parameters a, b and c were reparametrized by X0, Xs, CFIs and CFI_last (the estimated CFI at
the last observation). The two ways of reparametrization are both possible and provide the same results in
parameters a, b and c for the target trajectory curve. The reason we changed this reparametrization in the
deliverable is to make it consistant with the reparametrization in other functions (quadratic and linear, see
coming sections for more detail).

The function with initial parameters are fitted to CFI data:
source("abcd.R")

#===============================================================
# Filtration process to choose suitable function for TTC of CFI
# We fit a quadratic-linear (Q-LM) function for CFI data
# Thus a linear-plateau function is fitted to DFI data
#===============================================================

#Initial parameteres for parameter estimation
X0.0 = x[1]
Xlast = x[length(x)]

#Provide set of initial parameters
Xs.1 = round(seq(X0.0 + 1, Xlast - 1, len = 30), digits = 0)
X0.1 = rep(X0.0, length(Xs.1))
DFIs.1 <- c()
CFIs.1 <- c()
for(A in 1:length(Xs.1)){

DFIs2 = Data[Data$Age.plot == Xs.1[A],]$DFI.plot
CFIs2 = Data[Data$Age.plot == Xs.1[A],]$CFI.plot
DFIs.1 <- c(DFIs.1, DFIs2)
CFIs.1 <- c(CFIs.1, CFIs2)
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}

st1 = data.frame(cbind(X0.1,
Xs.1,
DFIs.1,
CFIs.1))

names(st1) <- c("X0","Xs", "DFIs","CFIs")

#---------------------------------------------------------------------
# Estimate parameters by NLS2 with upper and lower bound
#---------------------------------------------------------------------

st2 = nls2(Y ~ nls.func.2(X0, Xs, DFIs, CFIs),
Data.xy,
start = st1,
# weights = weight,
# trace = T,
algorithm = "brute-force")

par_init <- coef(st2)
par_init

## X0 Xs DFIs CFIs
## 68.000 209.000 2.347 241.154

Based on the estimated parameters obtained from par_init the function of TTC can be chosen:

• If the estimated Xs is too closed to either the begining or the end of growing period (10% each side) ->
Quadratic function

• If the slope of the function’s derivative (slope of DFI curve) is negative -> Linear function
• None of these option above -> Quandratic-linear function

Note: FuncType means function type

• LM means linear function
• QDR means quadratic function
• QLM means quadratic-linear function

#---------------------------------------------------------------------
# Classify CFI data to 3 groups with different TTC function
#---------------------------------------------------------------------
#Calculate Slope of DFI curve

c <- abcd.2(par_init)[3]
#Determine the end of growing period (then compared to Xs)

Xs.0 <- par_init[2]

if(c < 0){
FuncType <- "LM"

} else if(c > 0 &&
Xs.0 >= ((Xlast - X0.0)*0.2 + X0.0)
){

FuncType <- "QLM"
} else {

FuncType <- "QDR"
}

if(FuncType =="LM"){
ABC <- "linear"
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} else if(FuncType =="QDR"){
ABC <- "quadratic"

} else{
ABC <- "quadratic-linear"

}
print(paste("A ", ABC,

" function will be applied for CFI data to estimate the TTC", sep = ""))

## [1] "A quadratic-linear function will be applied for CFI data to estimate the TTC"

2.2. Identify the TTC by filtration process:

After the correct function is chosen, the TTC of CFI can be identified by this process:

2.2.1. A linear function is applied for CFI

The equation of the linear function:
Y = a + bX

Parameters a and b are reparametrized to:

• X0: the estimated age at which value of CFI is equal to 0
• Ylast: the estimated CFI value at the last observation (or CFIlast in the deliverable)

if(FuncType == "LM"){
#Remove unneccesary data

rm(list=ls()[! ls() %in% c("ID","Data", "FuncType", "x", "Y", "Z", "Data.xy")])
source("abcd.R")

#Initial parameteres for parameter estimation
x0.0 = x[1]
xlast <- x[length(x)]
ylast.0 = Y[length(x)]
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#Vector contains 4 initial parameters
par_init <- c(x0.0, ylast.0)

##################################################################
# 1. reparametrization CFI at X0 = 0
#function used for reparametrization in MAPLE
# solve({0 = X0*b+a, Ylast = Xlast*b+a}, {a, b});
# a = (Ylast*X0)/(X0 - Xlast), b = -(Ylast)/(X0-Xlast)
# 2. with the source of the function abcd and pred
##################################################################

#--------------------------------------------
# Create empty lists to store data after loop
#--------------------------------------------

par = list()
AC.res = list()
AC.pvalue = c()
data2 = list()
param <- data.frame(rbind(par_init))
par.abcd = data.frame(rbind(abcd.0(as.vector(par_init))))
param.2 <- data.frame(X0=double(),

Ylast=double(),
a=double(),
b=double(),
stringsAsFactors=FALSE)

j = 2
AC_pvalue = 0
AC.pvalue[1] = AC_pvalue
datapointsleft = as.numeric(dim(Data)[1])
dpl = datapointsleft #vector of all dataponits left at each step

#-------------------------------------------------------------------------------
# Start the procedure of Non Linear Regression
#-------------------------------------------------------------------------------
#
while (AC_pvalue<=0.05 && datapointsleft >= 20){

weight = 1/Y^2
#---------------- NON linear reg applied to log(Y) ---------------

nls.CFI <- nlsLM(Y ~ nls.func.0(X0, ylast),
Data.xy,
control = list(tol = 1e-2, printEval = TRUE, maxiter = 50),
start = list(X0 = par_init[1],

ylast = par_init[2]),
trace = F,
weights = weight)

#--------RESULTS analysis GOODNESS of fit
#estimate params
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par[[j]] = coef(nls.CFI)
par.abcd[j,] = abcd.0(as.vector(coef(nls.CFI) )) #calculation of a, b, c and d
param[j,] = par[[j]]
param.2[j-1,] = cbind(param[j,],par.abcd[j,])

# #summary
# summ = overview((nls.CFI)) #summary
#residuals
res1 = nlsResiduals(nls.CFI) #residuals
res2= nlsResiduals(nls.CFI)$resi1
res = res2[,2]
AC.res = test.nlsResiduals(res1)
AC.pvalue[j] = AC.res$p.value

#---------Check for negative residuals----------

#Add filtration step order to data
Step <- rep(j - 1, length(x))
#create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.0(par[[j]],x)[[1]], res, Step))
names(Data.new) <- c("Age",

"Observed_DFI",
"Observed_CFI",
"Predicted_CFI",
"Residual",
"Step")

# plot(Data.new$Age, Data.new$Predicted_CFI, type = "l", col = "black",lwd = 2,
# ylim = c(0, max(Data.new$Predicted_CFI, Data.new$Observed_CFI)))
# lines(Data.new$Age, Data.new$Observed_CFI, type = "p", cex = 1.5)
#
#remove negative res
Data.pos <- Data.new[!Data.new$Residual<0,]
# lines(Data.pos$Age, Data.pos$Predicted_CFI, type = "l", col = j-1, lwd = 2)
# lines(Data.pos$Age, Data.pos$Observed_CFI, type = "p", col = j, cex = 1.5)

#restart
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
j = j+1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x,Y))
dpl = c(dpl, datapointsleft); dpl

}

ANIMAL_ID = rep( ID, dim(param.2)[1])
XLAST = rep( xlast, dim(param.2)[1])
param.2 = cbind(ANIMAL_ID,

param.2,
XLAST,
AC.pvalue[2:length(AC.pvalue)],
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dpl[1:length(dpl)-1],
rep(FuncType, dim(param.2)[1])
)

colnames(param.2)= c("ANIMAL_ID",
"X0",
"Ylast",
"a",
"b",
"Xlast",
"P.runs.trst",
"DPL",
"FuncType"

)

param.2

#Add one column about the slope of DFI to the function
Slope <- rep(0, dim(param.2)[1])

param.2$Slope <- Slope

#-------------------------------------------------------------------------------
# Give Animal ID for each animal and save them to dataframes in the loop
#-------------------------------------------------------------------------------
ANIMAL_ID = rep( ID, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID , Data.new)

Data.remain = Data.new[,c(1:4)]
} else{
}

2.2.2. A quadratic function is applied for CFI

The equation of the linear function:
Y = a + bX + cX2

Parameters a and b are reparametrized to:

• X0: the estimated age at which value of CFI is equal to 0
• Xlast: the estimated age at the end of the growing period
• y2: the estimated CFI at the midpoint (or CFImid-point in the deliverable)
• ylast: the estimated CFI value at the last observation (or CFIlast in the deliverable)

if(FuncType == "QDR"){

#Remove unneccesary data
rm(list=ls()[! ls() %in% c("ID","Data", "FuncType", "x", "Y", "Z", "Data.xy")])
source("abcd.R")

#Initial parameteres for parameter estimation
xlast <- x[length(x)]
x0.0 = x[1]
y2.0 = Y[floor(length(x)*2/3)]
ylast.0 = Y[length(x)]
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#Vector contains 4 initial parameters
par_init <- c(x0.0, y2.0, ylast.0)

x2 = 2*(xlast - x[1])/3+x[1]

##################################################################
# 1. reparametrization CFI at X0 = 0
#function used for reparametrization in MAPLE
# solve({0=a+b*X0+c*X0**2+d*X0**3,
# y1 = a + b*(X0+1/3*(xlast-X0)) +
# c*(X0+1/3*(xlast-X0))**2 + d*(X0+1/3*(xlast-X0))**3,
# y2 = a + b*(X0+2/3*(xlast-X0)) + c*(X0+2/3*(xlast-X0))**2 +
# d*(X0+2/3*(xlast-X0))**3,
# ylast = a+b*xlast+c*xlast**2+d*xlast**3},{a,b,c,d});
# 2. with the source of the function abcd and pred
##################################################################

#--------------------------------------------
# Create empty lists to store data after loop
#--------------------------------------------

par = list()
AC.res = list()
AC.pvalue = c()
data2 = list()
data3 = list()
param <- data.frame(rbind(par_init))
par.abcd = data.frame(rbind(abcd.1(as.vector(par_init))))
param.2 <- data.frame(X0=double(),

Y2=double(),
Ylast=double(),
a=double(),
b=double(),
c=double(),
stringsAsFactors=FALSE)

j = 2
AC_pvalue = 0
AC.pvalue[1] = AC_pvalue
datapointsleft = as.numeric(dim(Data)[1])
dpl = datapointsleft #vector of all dataponitsleft at each step

#-------------------------------------------------------------------------------
# Start the procedure of Non Linear Regression
#-------------------------------------------------------------------------------
#
while (AC_pvalue<=0.05 && datapointsleft >= 20){

weight = 1/Y^2
#---------------- NON linear reg applied to log(Y) -----------------

nls.CFI <- nlsLM(Y ~ nls.func.1(X0, y2, ylast),
Data.xy,
control = list(tol = 1e-2, printEval = TRUE, maxiter = 50),
start = list(X0 = par_init[1], y2 = par_init[2],
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ylast = par_init[3]),
trace = F,
weights = weight)

#--------RESULTS analysis GOODNESS of fit
#estimate params
par[[j]] = coef(nls.CFI)
par.abcd[j,] = abcd.1(as.vector(coef(nls.CFI) )) #calculation of a, b, c and d
param[j,] = par[[j]]
param.2[j-1,] = cbind(param[j,],par.abcd[j,])

#Calculation of days associated with Y1 and Y2
x2[j] = (xlast - coef(nls.CFI)[1])*2/3+coef(nls.CFI)[1]
# #summary
# summ = overview((nls.CFI)) #summary
#residuals
res1 = nlsResiduals(nls.CFI) #residuals
res2= nlsResiduals(nls.CFI)$resi1
res = res2[,2]
AC.res = test.nlsResiduals(res1)
AC.pvalue[j] = AC.res$p.value

#---------Check for negative residuals----------

#Add filtration step order to data
Step <- rep(j - 1, length(x))
#create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.1(par[[j]],x)[[1]], res, Step))
names(Data.new) <- c("Age",

"Observed_DFI",
"Observed_CFI",
"Predicted_CFI",
"Residual",
"Step")

# plot(Data.new$Age, Data.new$Predicted_CFI, type = "l", col = "black",lwd = 2,
# ylim = c(0, max(Data.new$Predicted_CFI, Data.new$Observed_CFI)))
# lines(Data.new$Age, Data.new$Observed_CFI, type = "p", cex = 1.5)
#
#remove negative res
Data.pos <- Data.new[!Data.new$Residual<0,]
# lines(Data.pos$Age, Data.pos$Predicted_CFI, type = "l", col = j-1, lwd = 2)
# lines(Data.pos$Age, Data.pos$Observed_CFI, type = "p", col = j, cex = 1.5)

#restart
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
j = j+1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x,Y))
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dpl = c(dpl, datapointsleft); dpl
}
ANIMAL_ID = rep( ID, dim(param.2)[1])
XLAST = rep( xlast, dim(param.2)[1])
param.2 = cbind(ANIMAL_ID,

param.2,
x2[2:length(x2)],
XLAST,
AC.pvalue[2:length(AC.pvalue)],
dpl[1:length(dpl)-1],
rep(FuncType, dim(param.2)[1])

)
colnames(param.2) = c("ANIMAL_ID",

"X0",
"Y2",
"Ylast",
"a",
"b",
"c",
"X2",
"Xlast",
"P.runs.trst",
"DPL",
"FuncType"

)
param.2
#Add one column about the slope of DFI to the function
Slope <- c()
for(ii in 1:dim(param.2)[1]){

if(param.2[ii,]$c < 0){
Slope.1 <- -1

} else {
Slope.1 <- 1

}

Slope <- c(Slope, Slope.1)
}

param.2$Slope <- Slope; param.2

#-------------------------------------------------------------------------------
# Give Animal ID for each animal and save them to dataframes in the loop
#-------------------------------------------------------------------------------
ANIMAL_ID = rep( ID, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID , Data.new)

Data.remain = Data.new[,c(1:4)]

} else{
}
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2.2.3. A quadratic-linear function is applied for CFI

The reparametrization was described above (see 2.2 for detail).
if(FuncType == "QLM"){

#Remove uneccesary data
rm(list=ls()[! ls() %in%

c("ID", "Data", "FuncType", "x", "Y", "Z",
"Data.xy", "X0.0", "Xlast", "par_init", "st1", "TTC.param")])

source("abcd.R")

#--------------------------------------------
# Create empty lists to store data after loop
#--------------------------------------------

par = list()
AC.res = list()
AC.pvalue = c()
data2 = list()
data3 = list()
param <- data.frame(rbind(par_init))
par.abcd = data.frame(rbind(abcd.2(as.vector(par_init))))
param.2 <- data.frame(X0=double(),

Xs=double(),
DFIs=double(),
CFIs=double(),
a=double(),
b=double(),
c=double(),
stringsAsFactors=FALSE)

j = 2
AC_pvalue = 0
AC.pvalue[1] = AC_pvalue
datapointsleft = as.numeric(dim(Data)[1])
dpl = datapointsleft #vector of all dataponitsleft at each step

#-------------------------------------------------------------------------------
# Start the procedure of Non Linear Regression
#-------------------------------------------------------------------------------

while ((AC_pvalue<=0.05) && datapointsleft >= 20){
weight = 1/Y^2
# ---------------- NON linear reg applied to log(Y) ----------------
st2 = nls2(Y ~ nls.func.2(X0, Xs, DFIs, CFIs),

Data.xy,
start = st1,
weights = weight,
trace = F,
algorithm = "brute-force")

par_init <- coef(st2)
par_init
# st1 <- st1[!(st1$Xs == par_init[2]),]
nls.CFI <- nlsLM(Y ~ nls.func.2(X0, Xs, DFIs, CFIs),
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Data.xy,
control = list(tol = 1e-2, printEval = TRUE, maxiter = 1024),
start = list(X0 = par_init[1], Xs = par_init[2],

DFIs = par_init[3], CFIs = par_init[4]),
weights = weight,
algorithm = "port",
lower = c(-100000,X0.0+1, -100000, -100000),
upper = c(100000, Xlast-1, 100000, 100000),
trace = F)

#--------RESULTS analysis GOODNESS of fit
#estimate params
par[[j]] = coef(nls.CFI)
par.abcd[j,] = abcd.2(as.vector(coef(nls.CFI) )) #calculation of a, b, c and d
param[j,] = par[[j]]
param.2[j-1,] = cbind(param[j,],par.abcd[j,])

#summary
# summ = overview((nls.CFI)) #summary
#residuals
res1 = nlsResiduals(nls.CFI) #residuals
res2= nlsResiduals(nls.CFI)$resi1
res = res2[,2]
AC.res = test.nlsResiduals(res1)
AC.pvalue[j] = AC.res$p.value

#---------Check for negative residuals----------

#Add filtration step order to data
Step <- rep(j - 1, length(x))
#create a new dataset with predicted CFI included
Data.new <- data.frame(cbind(x, Z, Y, pred.func.2(par[[j]],x)[[1]], res, Step))
names(Data.new) <- c("Age",

"Observed_DFI",
"Observed_CFI",
"Predicted_CFI",
"Residual",
"Step")

# plot(Data.new$Age, Data.new$Predicted_CFI, type = "l", col = "black",lwd = 2,
# ylim = c(0, max(Data.new$Predicted_CFI, Data.new$Observed_CFI)))
# lines(Data.new$Age, Data.new$Observed_CFI, type = "p", cex = 1.5)

#
#remove negative res
Data.pos <- Data.new[!Data.new$Residual<0,]
# lines(Data.pos$Age, Data.pos$Predicted_CFI, type = "l", col = j-1, lwd = 2)
# lines(Data.pos$Age, Data.pos$Observed_CFI, type = "p", col = j, cex = 1.5)

#restart
#Criteria to stop the loop when the estimated parameters are equal to initial parameters
datapointsleft = as.numeric(dim(Data.pos)[1])
par_init = par[[j]]
AC_pvalue = AC.pvalue[j]
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j = j+1
x <- Data.pos$Age
Y <- Data.pos$Observed_CFI
Z <- Data.pos$Observed_DFI
Data.xy <- as.data.frame(cbind(x,Y))
dpl = c(dpl, datapointsleft)
dpl
#Create again the grid
X0.0 <- x[1]
Xlast <- x[length(x)]
#Xs
if(par_init[2] -15 <= X0.0){

Xs.1 = round(seq(X0.0 + 5, Xlast - 5, len = 30), digits = 0)
} else if(par_init[2] + 5 >= Xlast){

Xs.1 = round(seq(par_init[2]-10, par_init[2]-1, len = 6), digits = 0)
} else{

Xs.1 = round(seq(par_init[2]-5, par_init[2] + 5, len = 6), digits = 0)
}
#
X0.1 = rep(X0.0, length(Xs.1))
DFIs.1 <- c()
CFIs.1 <- c()
for(A in 1:length(Xs.1)){

DFIs2 = Data[Data$Age.plot == Xs.1[A],]$DFI.plot
CFIs2 = Data[Data$Age.plot == Xs.1[A],]$CFI.plot
DFIs.1 <- c(DFIs.1, DFIs2)
CFIs.1 <- c(CFIs.1, CFIs2)
}

st1 = data.frame(cbind(X0.1,Xs.1, DFIs.1, CFIs.1))

if(X0.0 <= par_init[2] && Xlast >=par_init[2]){
st1 <- rbind(st1, par_init)

}
names(st1) <- c("X0","Xs", "DFIs","CFIs")
}

ANIMAL_ID = rep( ID, dim(param.2)[1])
param.2 = cbind(ANIMAL_ID,

param.2,
XLAST = rep( Data$Age.plot[length(Data$Age.plot)], dim(param.2)[1]),
AC.pvalue[2:length(AC.pvalue)],
dpl[1:length(dpl)-1],
rep(FuncType, dim(param.2)[1])
)

colnames(param.2)= c("ANIMAL_ID",
"X0",
"Xs",
"DFIs",
"CFIs",
"a",
"b",
"c",
"Xlast",
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"P.runs.trst",
"DPL",
"FuncType"

)

#Add one column about the slope of DFI to the function
Slope <- c()
for(ii in 1:dim(param.2)[1]){

if(param.2[ii,]$c < 0){
Slope.1 <- -1

} else {
Slope.1 <- 1

}

Slope <- c(Slope, Slope.1)
}

param.2$Slope <- Slope

#-------------------------------------------------------------------------------
# Give Animal ID for each animal and save them to dataframes in the loop
#-------------------------------------------------------------------------------
ANIMAL_ID = rep( ID, dim(Data.new)[1])
Data.new = cbind(ANIMAL_ID , Data.new)

Data.remain = Data.new[,c(1:4)]
} else{

}

Results of the filtration process Note:

• Each row corresponds to each filtration step (to eliminate data with negative residuals).
• X0, Xs, DFIs, CFIs, a, b, c are the origin and reparametrized parameters estimated.
• Xlast: The last day of age.
• P.runs.trst: The P-value of auto-correlation test (runs test).
• DPL: The data points left in each step.
• Slope: slope of the function (possitive when it = 1 and negative when = -1)

## ANIMAL_ID X0 Xs DFIs CFIs a b
## 2 5596 64.78902 209 1.917971 224.7833 -67.25417 0.8766461
## 3 5596 64.57491 209 1.664576 228.2906 -94.23315 1.4217750
## 4 5596 63.25414 209 1.748924 235.2599 -89.88121 1.3624740
## 5 5596 61.71493 209 1.861073 238.2424 -78.50205 1.1699743
## c Xlast P.runs.trst DPL FuncType Slope
## 2 0.0024912069 210 1.365028e-30 143 QLM 1
## 3 0.0005808645 210 2.409260e-16 78 QLM 1
## 4 0.0009245224 210 2.178170e-07 44 QLM 1
## 5 0.0016533473 210 2.799182e-02 21 QLM 1

Estimated parameters are obtained:

## ANIMAL_ID X0 Xs DFIs CFIs a b c
## 5 5596 61.71493 209 1.861073 238.2424 -78.50205 1.169974 0.001653347
## Xlast P.runs.trst DPL FuncType Slope
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## 5 210 0.02799182 21 QLM 1

When applying a linear-plateau function for DFI, we encountered two possible problems:

• Firstly, the linear segment sometimes had a very modest negative slope, which would mean that the
DFI decreased with increasing age. In that case, a constant value for DFI was assumed, resulting in a
linearly increasing function for CFI.

• Secondly, Xs was sometimes estimated to be very close to either the first or the last observation and
the linear-plateau curve would resemble a linear curve. A linear function was then used to describe
DFI, resulting in a quadratic function for CFI.

a. A quadratic function is replaced the quadratic-linear function

The R-code is similar to 2.1; thus, we will not display here.

b. A linear function is replaced the quadratic-linear function

The R-code is similar to 2.1; thus, we will not display here.

Plot the target trajectory curve:
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Step 3: Identify perturbations

Once the target trajectory curve of CFI is identified, deviations between this curve and the actual CFI data
can be used to quantify perturbations. However, not all deviations are indicative of perturbations. In fact,
small (natural) oscillations in the feed intake patterns seem to exist and we only aim to quantify the most
important deviations that are the result of perturbations. The purposes of this step are to define how many
perturbations are in the growing period of the pig, approximate start and end days and magnitude of each
perturbation. B-spline functions in Functional Data Analysis are chosen to identify the perturbation periods.

3.1. Calculate the difference between actual CFI target CFI

The differences between CFI and TTC are presented as percentage (%)
# Calculate the differences between CFI and its TTC
res <- CFI - ITC

#Represent differences in percentage
percent <- res/ITC*100

3.2. Set conditions for B-spline functions

Factors which determine the smoothness of B-slpine function are chosen arbitrarily:
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• B-spline is a set of polynomial functions which joined end-to-end with each other at interval boundaries
called knots. Number of knots was chosen as the length of growing period

• The order of these polynomials (one larger than the degree of polynomials) was given the value of
6 (therefore the degree of polynomial was 5)

• The curvature of the function (also is the second derivative of the function) which determines the
shape of the curve was given the value of 4

• Lambda - smoothing parameter which controls the smoothness of the curve by penalizing the curvature
was given the value of 0.01

#==================================================================
# Fit a curve to the diferences between CFI and TTC (percent) - use of B spline function
#==================================================================

#number of basis functions = order + number of interior knots
#Roughness penalty

lambda = 1e-2
pen_what = 4 # ensure the smoothness of 2nd derivative
norderT = 6 # because we need the 4th derivative to be continue
nby = 1 #round(length(Age)/3) # which knots? =1 all points, =2, every 2...
rangeval=c(min(Age),max(Age))

#start the process
# create the time step based on nby

idx = c(seq(1,length(Age), by=nby), length(Age))
idx = unique(idx) # in case the last value is taken twice

# Create B-Spline basis of order order T with n knots
#help(create.bspline.basis)
#nbasis = norder + (number of interior knots) - 2 nbasis = 62,

basisobj <- create.bspline.basis(rangeval , norder=norderT , breaks=Age[idx])
fdPar <- fdPar(basisobj, pen_what, lambda)

3.3. Choose a value of time interval

Choose a value of time interval and generate a series of values from the first to the last Age with the chosen
time interval (e.g. if time interval is equal to 0.1, the series are 80.1, 80.2. . . )
#evaluation days for TTC and spline functions :
#time interval can be changed by = 0.1, 0.01 , ...

dexima.i <- .1 # interval number
eval_day <- seq(min(Age), max(Age),by=dexima.i) #days for FI estimation

3.4. Fit B-spline function for percentage of differences between CFI and TTC

# Fit B Spline to amount of differences between TTC and CFI (percentage)
difCFI.fd <- smooth.basis(Age, percent, fdPar)
Smooth.difCFI <- difCFI.fd$fd
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3.5. Determine the values of that smoothing function and its first derivative

Determine the values of that smoothing function and its first derivative. Save the series of days with chosen
time interval, smoothing values and their first derivative into one dataframe. This dataframe is used to detect
perturbations.
#-------------------------------------------------------------------------------
# Results of SPLINE
#-------------------------------------------------------------------------------

#Evaluation of B-spline for the difference between TTC and CFI (percentage)
val.CFI <- eval.fd(eval_day, Smooth.difCFI ) # Spline function
vel.CFI <- eval.fd(eval_day, Smooth.difCFI, 1) # 1st derivative of Spline function
acc.CFI <- eval.fd(eval_day, Smooth.difCFI, 2) # 2nd derivative of Spline function

#Call new names for val.CFI and vel.CFI
dif.CFI <- val.CFI # Spline function of difference between CFI and TTC
dif.DCFI <- vel.CFI # 1st derivative of Spline function (slope)

#-------------------------------------------------------------------------------
#Make data frame called "dif" only contains time, values of spline function,
#of its slope and difference between CFI and its TTC
#-------------------------------------------------------------------------------

#For the difference
dif = as.data.frame(cbind(eval_day, dif.CFI, dif.DCFI))
names(dif) <- c("eval_day","dif.CFI", "dif.DCFI")

head(dif)

## eval_day dif.CFI dif.DCFI
## 1 68.0 -70.77459 23.86018
## 2 68.1 -68.40658 23.49817
## 3 68.2 -66.07533 23.12490
## 4 68.3 -63.78198 22.74035
## 5 68.4 -61.52764 22.34453
## 6 68.5 -59.31344 21.93752

3.6. Detect deviations of CFI from TTC

This step used results obtained from B-spline functions to calculate:

• Start time of each perturbation
• End time of each perturbation
• Its magnitude

#-------------------------------------------------------------------------------
# Detect changes in the sign of 1st derivative
#-------------------------------------------------------------------------------

#Criteria for a normal range from which everything below is considered as deviations
crit1 = 0

#we set this criteria is 0,
#so whenever actual CFI decreases from TTC we consider as deviations

#Days belong to normal range
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no.pert.age.val = eval_day[which(dif.CFI >= crit1)]
#Determine when res is in normal range
dif$CFIzero = rep(1,length(eval_day))
dif$CFIzero[eval_day %in%no.pert.age.val] = 0

#-------------------------------------------------------------------------------
# Sign of 1st derivative of B-Spline function
#-------------------------------------------------------------------------------

#create a vector for sign of 1st derivative "sign.vel"
dif$sign.vel=rep(0,length(eval_day))

#When sign of 1st derivative is possitive (sign.vel = 1)
dif$sign.vel[which(dif.DCFI >0)] = 1

#When sign of 1st derivative is negative (sign.vel = -1)
dif$sign.vel[which(dif.DCFI <0)] = -1

#-------------------------------------------------------------------------------
#Calculate the variation in signs of the slope between
#the day before and the day after.
#EX: if the slope changes from negative to possitive
#from the day before to the day after.
#To do that: Create one data frame from "dif" in which: the first row is removed
#And calculate the differences in slopes with "dif"
#-------------------------------------------------------------------------------

#Duplicate the last row so the new data frame will have equal length with "dif"
lastrow <- cbind(Age[length(Age)] + dexima.i, dif[dim(dif)[1],][,-1])
names(lastrow) <- c("eval_day","dif.CFI", "dif.DCFI","CFIzero", "sign.vel" )

#Create the new data frame, remove first row and duplicate the last row
difp1 = rbind(dif[-1,], lastrow)

#-------------------------------------------------------------------------------
#Determine the days in which the deviation of CFI from TTC are maximum and minimum
#-------------------------------------------------------------------------------

difp1$maxmin = dif$sign.vel - difp1$sign.vel
#When the 1st derivative changes from negative to positive, sign = -1 - 1 = -2
#therefore maxmin = -2 is min,
#
#When the 1st derivative changes from pos to neg, sign = 1 - (-1) = 2
#therefore maxmin = +2 is max

#-------------------------------------------------------------------------------
# Determine the days in which CFI curves start
# to deviate from and come back to normal range
#-------------------------------------------------------------------------------

difp1$end.p = dif$CFIzero - difp1$CFIzero
#CFIzero = 0 when CFI is equal TTC, otherwise = 1
#Value of end.p is equal to 1: come back inside the normal range
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#Value of end.p is equal to -1: go out of the normal range

3.7. Examining data from the first week

Because the begining time is mixing period, pigs encounter many stressors which decrease feed intake. In the
begining only a small reduction in FI can lead to huge difference in %, so we removed the first period.

However, deviations that started during the first week and for which the selection criteria of duration and
magnitude continue to hold during the second week were considered to be the result of a perturbation.
#Criteria to remove the first period of mixing group effect on pigs
crit2 = 7 #we remove 1st week

#Find the end of the first perturbation
normal.day <- difp1 %>% filter(end.p ==1); normal.day <- normal.day$eval_day

#Find the begining of the first perturbation
pertub.day <- difp1 %>% filter(end.p == -1); pertub.day <- pertub.day$eval_day

#After remove the first growing period (7 days)
#if the 1st deviation has its magnitude larger than 5%
#We consider it as a perturbation, thus, we
#include all data from first period to the data again

if(normal.day[1] - difp1$eval_day[1] < crit2 &
normal.day[1] < pertub.day[1] &
pertub.day[1] < difp1$eval_day[1] + crit2){

crit2 = 0
} else if(normal.day[1] - difp1$eval_day[1] < crit2 &

normal.day[1] < pertub.day[1] &
pertub.day[1] > difp1$eval_day[1] + crit2 ){

crit2 = 7
} else if(normal.day[1] - difp1$eval_day[1] < crit2 &

normal.day[1] > pertub.day[1] &
pertub.day[2] > difp1$eval_day[1] + crit2){

crit2 = 7
} else if(normal.day[1] - difp1$eval_day[1] < crit2 &

normal.day[1] > pertub.day[1] &
pertub.day[2] < difp1$eval_day[1] + crit2){

crit2 = 0
} else{

normal.day1 <- ifelse(normal.day[1] > difp1$eval_day[1] + crit2,
normal.day[1],
normal.day[2])

#Test if after removing the first week,
#magnitude of deviation is still larger than 5%;
#we keep 1st week, otherwise we remove 1st week
test.data <- filter(difp1,

eval_day %in% seq(difp1$eval_day[1] + crit2,
normal.day1,
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by = 0.1))
dif.CFI1 <- test.data %>%

group_by(dif.CFI) %>%
summarise(count = n()) %>%
arrange(desc(count)) %>%
top_n(2)

as.numeric(dif.CFI1$dif.CFI)
crit2 = ifelse(dif.CFI1$dif.CFI[1] <= -5 &&

(normal.day1 - (difp1$eval_day[1] + crit2)) >= 5,
0, 7)

}

#Define the days in which actual CFI is deviated from the target CFI
#deviated ages (which have CFI values < normal range)
dev.age = difp1[difp1$dif.CFI < crit1 & difp1$eval_day > eval_day[1] + crit2,]$eval_day

#data frame contains all information of the perturbed days
dev.df <- difp1[difp1$eval_day %in% dev.age,]

#Check if crit2 = 0, we have to include the first week to perturbation
crit2

## [1] 7

3.8. Determine the duration of each perturbation

#-------------------------------------------------------------------------------
# Extract min , max and start and end points of the deviations
#-------------------------------------------------------------------------------

# perturbed days when res have maximum values
max = dev.df$eval_day[which(dev.df$maxmin == -2)]

# values of max
dif.max = dif$dif.CFI[dif$eval_day%in%max]

# perturbed days when res have maximum values
min = dev.df$eval_day[which(dev.df$maxmin == 2)]

# values of min
dif.min = dif$dif.CFI[dif$eval_day%in%min]

# start days of deviations
start.raw <- dev.df$eval_day[which(dev.df$end.p == -1)]
if(sum(start.raw) == 0){

start = dev.df$eval_day[1]
} else{

if(start.raw[1] == dev.age[1]){
start = start.raw
} else{
start = c(dev.age[1], start.raw)
}
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}
# values of start

dif.start = dif$dif.CFI[dif$eval_day%in%start]

# end days of deviations
end = difp1[difp1$end.p == 1 & difp1$eval_day > eval_day[1] + crit2,]$eval_day

# values of end
dif.end = dif$dif.CFI[dif$eval_day%in%end]

#Create an empty table.i which has the length equal to the number of "start" and "end"
#per = number of deviation

table.i <- data.frame(per=1:max(length(end),
length(dif.end),
length(start),
length(dif.start)))

#Fill in the vectors of days and values of start and end points to table
table.i$start <- c(start, rep(NA, nrow(table.i)-length(start)))
table.i$dif.start <- c(dif.start, rep(NA, nrow(table.i)-length(dif.start)))
table.i$end <- c(end, rep(NA, nrow(table.i)-length(end)))
table.i$dif.end <- c(dif.end, rep(NA, nrow(table.i)-length(dif.end)))

#-------------------------------------------------------------------------------
# Modify the table for statrt and the end days if there is NA in table
#-------------------------------------------------------------------------------

#Create a table.dev only contains start and end points (without values)
dev.table <- cbind()

#If CFI value is lower than TTC in the first day of dataset,
#involve the first day of age in the data as the start day of the deviation

for( ii in 1: length(table.i$per)){
#in case pig starts perturbed before scale of dataset
#and does not recover to normal range; i.e. i = 1
#
if(length(table.i$per) == 1 & sum(is.na(table.i$start)) == 0 &

sum(is.na(table.i$end)) > 0){
dev.table <- cbind(table.i$start,Age[length(Age)])
} else if(start[1] > end[1] & sum(is.na(table.i$start)) == 0) {

#
#set 1st day of age as start day of 1st deviation
#and last day of age as end day of last deviation

dev.table <- cbind(c(Age[1],
table.i$start),

c(table.i$end, Age[length(Age)]))
#in case number of end days is larger than no of start days
#eg. i = 8, lambda = 0.01

} else if(start[1] > end[1] & sum(is.na(table.i$start)) > 0){
#Remove last day of start
#and add 1st day of age as start day of 1st deviation

dev.table <- cbind(c(Age[1],
table.i$start[-length(table.i$start)]),
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c(table.i$end))

#in case last end day is NA because pig does not recover completely
} else if (start[1] < end[1] & sum(is.na(table.i$end)) > 0){ # i = 45
#

#change last end day by last day of age
dev.table <- cbind(table.i$start,

c(table.i$end[-length(table.i$end)],
Age[length(Age)]))

#Normal case
#
} else{
dev.table <- cbind(table.i$start, table.i$end) #
}

}

dev.table <- as.data.frame(dev.table)
colnames(dev.table) <- c("Start", "End")

# Add values of start and end days to table
value.start <- dif$dif.CFI[dif$eval_day %in% dev.table$Start]
value.end <- dif$dif.CFI[dif$eval_day %in% dev.table$End]
dev.table <- cbind(dev.table[1], value.start, dev.table[2], value.end)

#-------------------------------------------------------------------------------
# Calculate the duration of each deviation
#-------------------------------------------------------------------------------
dev.table$Devia.days <- dev.table$End - dev.table$Start
dev.table

## Start value.start End value.end Devia.days
## 1 75.2 -0.321914197 83.2 0.01312561 8.0
## 2 86.0 -0.009909733 206.2 0.03443202 120.2

3.9. Identify perturbations from deviations

Duration
#min number of days for a pert

crit3 = 1
#create a table which includes all information of perturbations

pertub.table <- data.frame()
for(ii in 1:dim(dev.table)[1]){

if(dev.table$Devia.days[ii] < crit3){
next

}
pertub.table <- rbind(pertub.table, dev.table[ii,])

}

#-------------------------------------------------------------------------------
# Give a name to each perturbation
#-------------------------------------------------------------------------------
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Per <- c()
Per1<- factor()
for(ii in 1:dim(pertub.table)[1]){

Per1 <- paste("P", ii, sep = "")
Per <- c(Per, Per1)

}

pertub.table <- cbind(as.factor(Per), pertub.table)
names(pertub.table) <- c("Per", "Start", "value.start",

"End", "value.end", "Devia.days")

#Check the magnitude of each deviation
#if it decreases less than 5% from the TTC, we do not consider it as a perturbation

A <- data.frame()
for(ii in 1:dim(pertub.table)[1]){

A1 <- dif %>%
filter(eval_day %in% as.character(seq(pertub.table$Start[ii],

pertub.table$End[ii],
by = dexima.i))) %>%

select(eval_day, dif.CFI) %>%
arrange(dif.CFI)

A1 <- A1[1,]
A <- rbind(A, A1)

}
names(A) <- c("Min.Day", "Min.perc")
pertub.table <- cbind(pertub.table, A)

#Remove the deviations which have their duration less than 5 days from the table
pertub.table <- pertub.table %>% filter(Min.perc <= -5)

3.10. Label each perturbation

#-------------------------------------------------------------------------------
# Provide each perturbation with a lable
#-------------------------------------------------------------------------------

if(dim(pertub.table)[1] == 0){
difp1$ppert <- NA
dev.df$ppert <- NA

} else{
for(ii in 1:dim(pertub.table)[1]){
pert.int = as.character(seq(pertub.table$Start[ii],

pertub.table$End[ii],
by=dexima.i))

difp1$ppert[as.character(difp1$eval_day) %in% pert.int] <- paste("P", ii, sep = "")
}

# Include label for dataset only contains deviations "dev.df"
for(ii in 1:dim(pertub.table)[1]){
pert.int = as.character(seq(pertub.table$Start[ii],
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pertub.table$End[ii],
by=dexima.i))

dev.df$ppert[as.character(dev.df$eval_day) %in% pert.int] <- paste("P", ii, sep = "")
}

}

#Final check the table
pertub.table

## Per Start value.start End value.end Devia.days Min.Day Min.perc
## 1 P1 75.2 -0.321914197 83.2 0.01312561 8.0 78.4 -6.132095
## 2 P2 86.0 -0.009909733 206.2 0.03443202 120.2 108.7 -27.303450

3.11. Plot the perturbation
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Note: We detected two perturbations from the feed intake data of this animal; nevertheless, for the purpose
of illustrating the model’s concept, we only describe here the response of the animal against the second
perturbation.
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Step 4: Modelling the response to a perturbation

Once the perturbed period is identified, a single perturbation was characterized by a system of differential
equations.

Model’s mechanism is described very simply in the figure below. Daily feed intake of the pig is the factor to
be modelled. It encompasses three elements: desired feed intake, impact of perturbation and its own
adaptation capacity:

• In the absence of a perturbation, the actual DFI is equal to the target DFI (1).
• The initiation of a perturbation has a negative and constant effect on DFI and because of the reduction

in DFI, the actual CFI curve starts to deviate from the target CFI (2).
• The ratio between the target CFI and the actual CFI triggers the pig’s resilience mechanism in a

proportional way, the greater the ratio between the target and actual CFI, the greater will be the
resilience mechanism for DFI (3).

• Once the perturbing factor is over, its effect on DFI disappears but the ratio will still be greater than
one. This results in compensatory DFI where the actual DFI will be greater than the target DFI feed
intake which, in turn, results in that the actual CFI will approach the target CFI (4).

Our model is conceptualized in a way that the impact of a single perturbation to the feed intake of the pig
and its response can be characterized by four parameters:

• tbeg1t: the start time of perturbing factor (day of age). It is called Start in the deliverable.
• tstop1: the end time of perturbing factor (day of age). It is called End in the deliverable.
• p1: Percentage of DFI left under the period of perturbation (%). It is opposite to the value Instanta-

neous reduction in DFI in the deliverable. The Instantaneous reduction in DFI can then be
calculated as 1 - p1

• max.compFI1: the capacity of the animal to adapt to the perturbation through resistant and
compensatory feed intake. It is called Resilience parameter k in the deliverable.

#Remove unneccesary data
rm(list=ls()[! ls() %in% c("Data",

"dev.df",
"difp1",
"param.2",
"pertub.table",
"res.data")])
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#Load needed functions
source("Step4_functions.R")
source("abcd.R") #functions
options(digits=3)

#===============================================================
# DATA PREPARATION
#===============================================================

#Order number of Animal_ID
ID = unique(as.factor(Data$ANIMAL_ID))

#----------------------------
# Extract data for animal i
#----------------------------

CFI.obs = Data$CFI.plot
DFI.obs = Data$DFI.plot
Age = Data$Age.plot

#Difference between actual and target CFI (kg)
res <- res.data$res

#Information of TTC function
TTC.param <- param.2[dim(param.2)[1],]
FuncType <- TTC.param$FuncType
Slope <- TTC.param$Slope

if(FuncType =="LM"){
print("A Linear function was used to identify the TTC of CFI")

} else if(FuncType =="QDR"){
print("A Quadratic function was used to identify the TTC of CFI")

} else{
print("A Quadratic-linear function was used to identify the TTC of CFI")

}

## [1] "A Quadratic function was used to identify the TTC of CFI"

Calculate magnitude (the position when the actual CFI reduced maximum from target CFI) of the perturba-
tion:
#Magnitude of the perturbation
# magnitude = res.data %>% filter(Age >= pertub.table$Start & Age <= pertub.table$End)
magnitude = res.data %>% filter(Age >= pertub.table$Start[2] &

Age <= pertub.table$End[2])
magnitude = magnitude %>% filter(res == min(magnitude$res))

Extract suitable function for TTC (depends on the type of function we fit to CFI):
#-------------------------------------------------------------------------------
# Calulate TTC using abcd function
#-------------------------------------------------------------------------------

if(FuncType == "LM"){
param.i <- as.numeric(TTC.param[,c(4:5)])
ITC <- pred.abcd.0(param.i, Age)[[1]]
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ITD <- rep(param.i[2], length(Age))

} else if(FuncType == "QDR"){
param.i <- as.numeric(TTC.param[,c(5:7)])
ITC <- pred.abcd.1(param.i, Age)[[1]]
ITD <- pred.abcd.1(param.i, Age)[[2]]

} else{
param.i <- as.numeric(TTC.param[,c(6:8)])
Xs <- TTC.param$Xs
ITC <- pred.abcd.2(param.i, Age)[[1]]
ITD <- pred.abcd.2(param.i, Age)[[2]]

}

Modelling the response of animal to a single perturbation

4.1. TTC is defined by a linear function

if(FuncType == "LM"){

##-----------------------------
## initial values of parameters
##-----------------------------
tbeg1 = pertub.table$Start # tbeg1 corresponds to the start point
tstop1 = magnitude$Age
p1 = 0.18
#because we modified negative impact of perturbation as (p1 -1)
#the smaller p1 is the more severe impact is
max.compFI1 = 4
a = TTC.param$a
b = TTC.param$b

yinit <- c(CumFI = CFI.obs[Age == Age[1]]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = .1)

##-----------------------------
## parameters
##-----------------------------

param = c( p1, max.compFI1, tbeg1, tstop1, a, b)

##-----------------------------
## solve the model
##-----------------------------

yout <- ode(y= yinit,
times = times.ode,
func = ODE.CFI.0,
parms = param,
atol = 1e-10,
rtol = 1e-10)

summary(yout)
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# ##--------------------------------------------------
# ## plot when fitting initial parameters to the model
# ##--------------------------------------------------
#
# Time = times.ode
# onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
# ITC.sim <- pred.abcd.0(param.i, Time)[[1]]
#
# #Difference between actual and target CFI (simulation)
# plot(yout[ , 1], yout[ ,2] -(ITC.sim),
# main = "When initial parameters were fitted to data",
# xlab = "Age (days)", type = "l", ylab = "CFI - TTC(kg)",
# ylim = c(min(CFI.obs - ITC, yout[ ,2] -(ITC.sim)),
# max(CFI.obs - ITC, yout[ ,2] -(ITC.sim))),
# lwd = 2,
# cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)
# points ( Age, CFI.obs - ITC, type = "p", col = "red")
# abline(v=tbeg1, lty=2)
# abline(v=tstop1, lty = 2)
# abline(0,0, col = "red")
# par(mfrow = c(1,1))
# # dev.off()

# ============== Estimation of parameters ================== ==================

##-----------------------------
## initial values and times
##-----------------------------

yinit <- c(CumFI = CFI.obs[Age == Age[1]]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = 1)

##-----------------------------
## parameters
##-----------------------------

par.init = c( p1, max.compFI1, tbeg1, tstop1)

##-----------------------------
## solve the model
##-----------------------------

yout <- ode(y= yinit,
times = times.ode,
func = ODE.CFI.optim.0,
parms = par.init,
atol = 1e-10,
rtol = 1e-10)

summary(yout)

##-----------------------------
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# run the optimization with NLS2
##-----------------------------
Data.xy = Data
times = Data.xy$Age.plot
ODE.CFI.obj.0(par.init, Data.xy)

#Estimate parameters by Optim and the best initial parameters
optim.res = optim(par.init, ODE.CFI.obj.0, hessian = TRUE)

P.optim = c(optim.res$par[1], optim.res$par[2], optim.res$par[3], optim.res$par[4])

ODE.CFI.obj.0(P.optim, Data.xy)

# Simulate the ode function
yout <- ode(yinit, times, ODE.CFI.optim.0, P.optim)

} else{}

## NULL

4.2. TTC is defined by a quadratic function

if(FuncType == "QDR"){

##-----------------------------
## initial values and times
##-----------------------------
tbeg1 = pertub.table$Start # tbeg1 corresponds to the start point
tstop1 = magnitude$Age
p1 = 0.2
#because we modified negative impact of perturbation as (p1 -1)
#the smaller p1 is the more severe impact is
max.compFI1 = 2
a = TTC.param$a
b = TTC.param$b
c = TTC.param$c

yinit <- c(CumFI = ITC[1]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = .1)

##-----------------------------
## parameters
##-----------------------------
param = c( p1, max.compFI1, tbeg1, tstop1, a, b, c)

##-----------------------------
## solve the model
##-----------------------------

yout <- ode(y= yinit,
times = times.ode,
func = ODE.CFI.1,
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parms = param,
atol = 1e-10,
rtol = 1e-10)

summary(yout)

# ##--------------------------------------------------
# ## plot when fitting initial parameters to the model
# ##--------------------------------------------------
#
# Time = times.ode
# onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
# ITC.sim <- pred.abcd.1(param.i, Time)[[1]]
#
# #Difference between actual and target CFI (simulation)
# plot(yout[ , 1], yout[ ,2] -(ITC.sim),
# xlab = "Age (days)", type = "l", ylab = "CFI - TTC(kg)",
# ylim = c(min(CFI.obs - ITC, yout[ ,2] -(ITC.sim)),
# max(CFI.obs - ITC, yout[ ,2] -(ITC.sim))),
# lwd = 2,
# cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)
# points ( Age, CFI.obs - ITC, type = "p", col = "red")
# abline(v=tbeg1, lty=2)
# abline(v=tstop1, lty = 2)
# abline(0,0, col = "red")
# par(mfrow = c(1,1))
# # dev.off()

# ============== Estimation of parameters ================== ==================

##-----------------------------
## initial values and times
##-----------------------------

yinit <- c(CumFI = ITC[1]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = 1)

##-----------------------------
## parameters
##-----------------------------

par.init = c( p1, max.compFI1, tbeg1, tstop1)

##-----------------------------
## solve the model
##-----------------------------

yout <- ode(y= yinit,
times = times.ode,
func = ODE.CFI.optim.1,
parms = par.init,
atol = 1e-10,
rtol = 1e-10)

summary(yout)
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##-----------------------------
# run the optimization with NLS2
##-----------------------------
Data.xy = Data
times = Data.xy$Age.plot
RSQ1 <- ODE.CFI.obj.1(par.init, Data.xy)

#Estimate parameters by Optim and the best initial parameters
optim.res = optim(par.init, ODE.CFI.obj.1, hessian = TRUE)

P.optim = c(optim.res$par[1], optim.res$par[2], optim.res$par[3], optim.res$par[4])

RSQ2 <- ODE.CFI.obj.1(P.optim, Data.xy)

# Simulate the ode function
yout <- ode(yinit, times, ODE.CFI.optim.1, P.optim)

print(paste("Residual sum of square before optimization:", round(RSQ1, digits = 2)))
print(paste("Residual sum of square after optimization:", round(RSQ2, digits = 2)))

} else{}

## [1] "Residual sum of square before optimization: 142.42"
## [1] "Residual sum of square after optimization: 32.12"

4.3. TTC is defined by a quadratic-linear function

if(FuncType == "QLM"){

##-----------------------------
## initial values and times
##-----------------------------

tbeg1 = pertub.table$Start # tbeg1 corresponds to the start point
tstop1 = magnitude$Age
p1 = 0.08
#because we modified negative impact of perturbation as (p1 -1)
#the smaller p1 is the more severe impact is
max.compFI1 = 9
a = TTC.param$a
b = TTC.param$b
c = TTC.param$c
Xs = TTC.param$Xs

yinit <- c(CumFI = CFI.obs[Age == Age[1]]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = .1)

##-----------------------------
## parameters
##-----------------------------

param = c( p1, max.compFI1, tbeg1, tstop1, a, b, c, Xs)
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##-----------------------------
## solve the model
##-----------------------------

yout <- ode(y= yinit,
times = times.ode,
func = ODE.CFI.2,
parms = param,
atol = 1e-10,
rtol = 1e-10)

summary(yout)

# ##--------------------------------------------------
# ## plot when fitting initial parameters to the model
# ##--------------------------------------------------
#
# Time = times.ode
# onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
# ITC.sim <- pred.abcd.2(param.i, Time)[[1]]
#
# par(mar=c(4.5,4.5,4.5,1.5))
#
# #Difference between actual and target CFI (simulation)
# plot(yout[ , 1], yout[ ,2] -(ITC.sim),
# xlab = "Age (days)", type = "l", ylab = "CFI - TTC(kg)",
# ylim = c(min(CFI.obs - ITC, yout[ ,2] -(ITC.sim)),
# max(CFI.obs - ITC, yout[ ,2] -(ITC.sim))),
# lwd = 2,
# cex.main = 1.5, cex.axis = 1.5, cex.lab = 1.5)
# points ( Age, CFI.obs -( ITC), type = "p", col = "red")
# abline(v=tbeg1, lty=2)
# abline(v=tstop1, lty = 2)
# abline(0,0, col = "red")
# par(mfrow = c(1,1))
# # dev.off()

# ============== Estimation of parameters ================== ==================

##-----------------------------
## initial values and times
##-----------------------------

yinit <- c(CumFI = CFI.obs[Age == Age[1]]) #state
times.ode <- seq(from = Age[1], to = Age[length(Age)], by = 1)

##-----------------------------
## parameters
##-----------------------------

par.init = c( p1, max.compFI1, tbeg1, tstop1)

##-----------------------------
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## solve the model
##-----------------------------

yout <- ode(y= yinit,
times = times.ode,
func = ODE.CFI.optim.2,
parms = par.init,
atol = 1e-10,
rtol = 1e-10)

summary(yout)

##-----------------------------
# run the optimization with NLS2
##-----------------------------
Data.xy = Data
times = Data.xy$Age.plot
ODE.CFI.obj.2(par.init, Data.xy)

#Estimate parameters by Optim and the best initial parameters
optim.res = optim(par.init, ODE.CFI.obj.2, hessian = TRUE)

P.optim = c(optim.res$par[1], optim.res$par[2], optim.res$par[3], optim.res$par[4])

ODE.CFI.obj.2(P.optim, Data.xy)

# Simulate the ode function
yout <- ode(yinit, times, ODE.CFI.optim.2, P.optim)

} else{}

## NULL

Estimated paramters of the model
name.param <- c("p1", "max.compFI1", "tbeg1", "tstop1")
Explanation <- c("% DFI left under impact of perturbation",

"Adaptation capacity",
"Start of perturbation",
"End of perturbation")

Table.per <- data.frame(cbind(name.param, round(P.optim, digits = 3), Explanation))
names(Table.per) <- c("Parameters", "Values", "Explanation"); Table.per

## Parameters Values Explanation
## 1 p1 0.2 % DFI left under impact of perturbation
## 2 max.compFI1 2.203 Adaptation capacity
## 3 tbeg1 85.05 Start of perturbation
## 4 tstop1 130.584 End of perturbation
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4.4. Plot the results
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Appendix 1: Reparametrization for the TTC function in step 2

The set of these functions is saved in file abcd.R

1. Linear function

#--------------------------------------------------------------
# Reparametrize a, b by X0 and ylast
#--------------------------------------------------------------

abcd.0 <- function(P){
X0 = P[1]
ylast = P[2]
a = (ylast*X0)/(X0 - ylast)
b = -(ylast)/(X0-xlast)

pp = as.vector(c(a,b))
return(pp)

}

#--------------------------------------------------------------
# NLS function
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#--------------------------------------------------------------

nls.func.0 <- function(X0, ylast){
pp = c(X0, ylast)
#calculation of a and b using these new parameters

b = abcd.0(pp)[2]
a =abcd.0(pp)[1]

return (a+b*x)
}

#--------------------------------------------------------------
# Fit new parameters to a linear function of CFI
#--------------------------------------------------------------

pred.func.0 <- function(pr,age){
#
X0 = pr[1]
ylast = P[2]

#
x = age
#calculation of a and b using these new parameters
b = abcd.0(pr)[2]
a =abcd.0(pr)[1]

#
results = list()
cfi = a+b*x
dfi = b
results[[1]]=cfi
results[[2]]=dfi
return (results)

}

#-----------------------------------------------------------------
# Linear function of CFI curve and its 1st derivative (DFI)
# with original parameters (only a and b)
#-----------------------------------------------------------------

pred.abcd.0 <- function(pr,age){
#
a = pr[1]
b = pr[2]

x = age

results = list()
cfi = a+b*x
dfi = b
results[[1]]=cfi
results[[2]]=dfi

46



return (results)
}

2. Quadratic function

#--------------------------------------------------------------
# Reparametrize a, b and c by X0, y2 and ylast
#--------------------------------------------------------------

abcd.1 <- function(P){
X0 = P[1]
y2 = P[2]
ylast = P[3]

a = (xlast*ylast-4*y2*xlast+X0*ylast)*X0/(xlast^2-2*X0*xlast+X0^2)
b = -(xlast*ylast-4*y2*xlast+3*X0*ylast-4*y2*X0)/((xlast-X0)^2)
c = 2*(-2*y2+ylast)/(xlast^2-2*X0*xlast+X0^2)

pp = as.vector(c(a,b,c))
return(pp)

}

#--------------------------------------------------------------
# NLS function
#--------------------------------------------------------------

nls.func.1 <- function(X0, y2, ylast){
pp = c(X0, y2, ylast)
#calculation of a,b and c using these new parameters

c = abcd.1(pp)[3]
b = abcd.1(pp)[2]
a =abcd.1(pp)[1]

return (a+b*x+c*x^2)
}

#--------------------------------------------------------------
# Fit new parameters to a quadratic function of CFI
#--------------------------------------------------------------

pred.func.1 <- function(pr,age){
#
X0 = pr[1]
y2 = P[2]
ylast = P[3]
#
x = age

c = abcd.1(pr)[3]
b = abcd.1(pr)[2]
a =abcd.1(pr)[1]
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#
results = list()
cfi = a+b*x+c*x^2
dfi = b+2*c*x
results[[1]]=cfi
results[[2]]=dfi
return (results)

}

#-----------------------------------------------------------------
# Quadratic function of CFI curve and its 1st derivative (DFI)
# with original parameters (only a, b and c)
#-----------------------------------------------------------------

pred.abcd.1 <- function(pr,age){
#
a = pr[1]
b = pr[2]
c = pr[3]

x = age

results = list()
cfi = a+b*x+c*x^2
dfi = b+2*c*x
results[[1]]=cfi
results[[2]]=dfi
return (results)

}

3. Quadratic-linear function

#--------------------------------------------------------------
# Reparametrize a, b and c by X0, Xs (breaking point),
# DFIs (DFI at Xs) and CFIs (CFI at Xs)
#--------------------------------------------------------------

abcd.2 <- function(P){
X0 = P[1]
Xs = P[2]
DFIs = P[3]
CFIs = P[4]

a = -X0*(2*CFIs*Xs-CFIs*X0-Xs^2*DFIs+Xs*DFIs*X0)/(Xs^2-2*X0*Xs+X0^2)
b = (-Xs^2*DFIs+DFIs*X0^2+2*CFIs*Xs)/(Xs^2-2*X0*Xs+X0^2)
c = -(CFIs-Xs*DFIs+X0*DFIs)/(Xs^2-2*X0*Xs+X0^2)

pp = as.vector(c(a,b,c))
return(pp)

}
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#--------------------------------------------------------------
# NLS function
#--------------------------------------------------------------

nls.func.2 <- function(X0, Xs, DFIs, CFIs){
pp = c(X0, Xs, DFIs, CFIs)

#-------------------------------------------------------
# Function to reparameter a, b and c of quadratic-linear function:
#-------------------------------------------------------
c = abcd.2(pp)[3]
b = abcd.2(pp)[2]
a =abcd.2(pp)[1]

ind1 <- as.numeric(x < Xs)
return (ind1*(a+b*x+c*x^2)+(1-ind1)*((a+b*(Xs)+c*(Xs)^2)+(b+2*c*(Xs))*(x-(Xs))))

}

#--------------------------------------------------------------
# Fit new parameters to a quadratic-linear function of CFI
#--------------------------------------------------------------

pred.func.2 <- function(pr,age){
#
X0 = pr[1]
Xs = pr[2]
DFIs = pr[3]
CFIs = pr[4]
#
x = age
#calculation of a,b and c using these new parameters
c = abcd.2(pr)[3]
b = abcd.2(pr)[2]
a = abcd.2(pr)[1]

#
ind1 <- as.numeric(x < Xs)
#
results = list()
cfi = ind1*(a+b*x+c*x^2)+(1-ind1)*((a+b*(Xs)+c*(Xs)^2)+(b+2*c*(Xs))*(x-(Xs)))
dfi = ind1*(b+2*c*x) + (1 - ind1)*(b+2*c*(Xs))
results[[1]]=cfi
results[[2]]=dfi
return (results)

}

#-----------------------------------------------------------------
# Quadratic-linear function of CFI curve and its 1st
# derivative (DFI) with original parameters (only a, b and c)
#-----------------------------------------------------------------

pred.abcd.2 <- function(pr,age){
#
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a = pr[1]
b = pr[2]
c = pr[3]

x = age
#
ind1 <- as.numeric(x < Xs)
#
results = list()
cfi = ind1*(a+b*x+c*x^2)+(1-ind1)*((a+b*(Xs)+c*(Xs)^2)+(b+2*c*(Xs))*(x-(Xs)))
dfi = ind1*(b+2*c*x) + (1 - ind1)*(b+2*c*(Xs))
results[[1]]=cfi
results[[2]]=dfi
return (results)

}

Appendix 2: Functions of differential equations in step 4

The set of these functions is saved in file Step4_functions.R

1. Linear function

#------------------------------
# Linear function for TTC
#------------------------------

#Fitting initial parameters to the model
ODE.CFI.0 <- function(Time, State, Pars) {
#
p1 = Pars[1]
max.compFI1 = Pars[2]
tbeg1 = Pars[3]
tstop1 = Pars[4]
a = Pars[5]
b = Pars[6]

#
with(as.list(c(State, Pars)), {

#
x = Time
#
ITC.CFI = a +b*x
ITC.DFI = b
#
onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
CompFI = (1-CumFI/ITC.CFI)*max.compFI1
#
dCumFI = (onoff*(p1-1) + CompFI + 1)*ITC.DFI
#
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return(list(c(dCumFI)))
})

}

#Function to estimate parameters
ODE.CFI.optim.0 <- function(Time, State, Pars) {

#
p1 = Pars[1]
max.compFI1 = Pars[2]
tbeg1 = Pars[3]
tstop1 = Pars[4]
# a = Pars[5]
# b = Pars[6]
# c = Pars[7]
# d = Pars[8]

#
with(as.list(c(State, Pars)), {

#
x = Time
#
ITC.CFI = a +b*x
ITC.DFI = b
#
onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
CompFI = (1-CumFI/ITC.CFI)*max.compFI1
#
dCumFI = (onoff*(p1-1) + CompFI + 1)*ITC.DFI
#
return(list(c(dCumFI)))

})
}

#Objective function
ODE.CFI.obj.0 <- function(P, data){

data = Data.xy
f <- ode(yinit, times, ODE.CFI.optim.0, P)
optim.f = sqrt(sum((data$CFI.plot- f[,2])^2))
return (optim.f)

}

2. Quadratic function

#------------------------------
# Quadratic function for TTC
#------------------------------

#Fitting initial parameters to the model
ODE.CFI.1 <- function(Time, State, Pars) {

#
p1 = Pars[1]
max.compFI1 = Pars[2]
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tbeg1 = Pars[3]
tstop1 = Pars[4]
a = Pars[5]
b = Pars[6]
c = Pars[7]

#
with(as.list(c(State, Pars)), {

#
x = Time
#
ITC.CFI = a + b*x + c*x^2
ITC.DFI = b+2*c*x
#
onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
CompFI = (1-CumFI/ITC.CFI)*max.compFI1
#
dCumFI = (onoff*(p1-1) + CompFI + 1)*ITC.DFI
#
return(list(c(dCumFI)))

})
}

#Function to estimate parameters
ODE.CFI.optim.1 <- function(Time, State, Pars) {

#
p1 = Pars[1]
max.compFI1 = Pars[2]
tbeg1 = Pars[3]
tstop1 = Pars[4]
# a = Pars[5]
# b = Pars[6]
# c = Pars[7]
# d = Pars[8]

#
with(as.list(c(State, Pars)), {

#
x = Time
#
ITC.CFI = a + b*x + c*x^2
ITC.DFI = b+2*c*x
#
onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
CompFI = (1-CumFI/ITC.CFI)*max.compFI1
#
dCumFI = (onoff*(p1-1) + CompFI + 1)*ITC.DFI
#
return(list(c(dCumFI)))

})
}

#Objective function
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ODE.CFI.obj.1 <- function(P, data){
data = Data.xy
f <- ode(yinit, times, ODE.CFI.optim.1, P)
optim.f = sqrt(sum((data$CFI.plot- f[,2])^2))
return (optim.f)

}

3. Quadratic-linear function

#----------------------------------
# Quadratic-linear function for TTC
#----------------------------------

#Fitting initial parameters to the model
ODE.CFI.2 <- function(Time, State, Pars) {
#
p1 = Pars[1]
max.compFI1 = Pars[2]
tbeg1 = Pars[3]
tstop1 = Pars[4]
a = Pars[5]
b = Pars[6]
c = Pars[7]

#
with(as.list(c(State, Pars)), {
#
x = Time
ind1 <- as.numeric(x < Xs)
#
ITC.CFI = ind1*(a+b*x+c*x^2)+(1-ind1)*((a+b*(Xs)+c*(Xs)^2)+(b+2*c*(Xs))*(x-(Xs)))
ITC.DFI = ind1*(b+2*c*x) + (1 - ind1)*(b+2*c*(Xs))
#
onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
CompFI = (1-CumFI/ITC.CFI)*max.compFI1
#
dCumFI = (onoff*(p1-1) + CompFI + 1)*ITC.DFI
#
return(list(c(dCumFI)))
})

}

#Function to estimate parameters
ODE.CFI.optim.2 <- function(Time, State, Pars) {

#
p1 = Pars[1]
max.compFI1 = Pars[2]
tbeg1 = Pars[3]
tstop1 = Pars[4]
# a = Pars[5]
# b = Pars[6]
# c = Pars[7]
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# d = Pars[8]

#
with(as.list(c(State, Pars)), {
#
x = Time
ind1 <- as.numeric(x < Xs)
#
ITC.CFI = ind1*(a+b*x+c*x^2)+(1-ind1)*((a+b*(Xs)+c*(Xs)^2)+(b+2*c*(Xs))*(x-(Xs)))
ITC.DFI = ind1*(b+2*c*x) + (1 - ind1)*(b+2*c*(Xs))
#
onoff = ifelse(Time>tbeg1 & Time<tstop1,1,0)
CompFI = (1-CumFI/ITC.CFI)*max.compFI1
#
dCumFI = (onoff*(p1-1) + CompFI + 1)*ITC.DFI
#
return(list(c(dCumFI)))
})

}

# objective function
ODE.CFI.obj.2 <- function(P, data){

data = Data.xy
f <- ode(yinit, times, ODE.CFI.optim.2, P)
optim.f = sqrt(sum((data$CFI.plot- f[,2])^2))
return (optim.f)

}
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