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1. Summary 

Objectives  

The aim of Feed-a-Gene is to improve and adapt the different components of monogastric (i.e., 

pigs, poultry, and rabbits) livestock production systems to enhance their overall efficiency and 

to reduce their environmental impact. One instrument to reach this overall aim is to develop 

novel indicators of feed efficiency. 

Feed efficiency has two components, relating to the digestive efficiency on the one hand and 

to the post-absorptive efficiency on the other hand. Therefore, new data referring to digestive 

efficiency and data referring to the post-absorptive efficiency (and to the overall feed efficiency) 

are needed to improve feed efficiency in animals. This deliverable aims to report findings on 

predictive biomarkers as new traits for digestive and overall feed efficiency in pigs. 

Rationale:  

Large variations in growth responses and nitrogen efficiency have been observed in 

populations of pigs. This issue has been addressed using different approaches in the Feed-a-

Gene project. Differences in piglet birth weight may cause variation in the digestibility of protein 

and amino acids. Faecal protein digestibility and N-retention as affected by birth weight was 

evaluated in an experiment performed at DLO (reported in Deliverable D2.4). However, 

N-balance studies are time-consuming and involve a limited number of animals. Indirect 

indicators such as biomarkers in blood or urine would be useful for the in vivo evaluation of 

differences in protein and amino acid metabolism and amino acid requirements. Another 

approach is to study feed efficiency by selecting for feed efficiency and study differences 

between the most and the least efficient animals. This is traditionally done by measuring feed 

intake and body weight gain in individual animals. However, knowledge of differences and 

changes in the molecular pathways contributing to digestive or post-absorptive nutrient 

efficiency through the identification of biomarkers would be of value. 

Pigs divergently selected for residual feed intake (RFI), also called net efficiency, can be used 

as an animal model to obtain large variation in traits related to feed efficiency (e.g., conversion 

ratio (FCR)) and different tissues and fluids can be collected to propose biomarkers of overall 

feed efficiency. Because of the genetic background of the animals, biomarkers can be used as 

(early) predictors of this trait in the population to increase genetic progress (e.g., in connection 

with WP5). 

The measurement of small molecules involved in or generated by metabolic processes in 

tissues and body fluids (e.g., blood and urine) is a feasible tool to identify possible biomarkers 

for specific metabolic responses and traits related to feed efficiency. Molecules include mRNA 

produced by gene transcription, proteins produced by mRNA translation, and metabolites. 

Metabolites measured with untargeted metabolomics can, because of the sensitivity of the 

technique, detect subtle alterations in biological pathways and provide insight in the 

mechanisms that underlie different physiological conditions. Liquid chromatography-mass 

spectrometry (LC-MS) based untargeted metabolomics analysis was applied to i) blood and 

urine samples from the study relating to N-utilization (i.e., birth weight x dietary protein supply 
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or genetic capacity to deposit protein x dietary protein supply), ii) to blood samples from a study 

with genetic lines divergently selected for residual feed intake (RFI) and plasma cortisol 

concentration, and iii) to blood samples from pigs with feed efficiency extremes.  

Taking advantage of large sets of transcriptomics data (mRNA concentrations) that have been 

acquired in i) muscle, one of the main tissues affected by feed efficiency differences, or ii) 

blood (a fluid that can be collected at repeated times during the growth period, large sets of 

molecular predictors of feed efficiency traits, such as RFI, gain-to-feed ratio (overall feed 

efficiency), and gain-to-energy feed ratio (energy efficiency) were also identified using machine 

learning methods 

The assumption that it is possible to identify molecules in tissues and fluids that are able to 

predict feed efficiency traits was thus validated. The variety of biological functions represented 

by the genes and metabolites included in the predictive models confirmed the integrative and 

complex nature of feed efficiency in growing pigs. The lists of biomarkers are transferred to 

WP5 as new possible traits to be included in next selection procedures. 

Teams involved:  

AU 

DLO 

INRA 

Topigs Norsvin 

 

Species and production systems considered:  

Growing pigs 
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2. Introduction 

Feed efficiency has traditionally been a very important component of the efficiency of pork 

production due to the fact that feed represents 60-70% of the total costs of pork production. 

Feed efficiency has several components, including external components like feed spillage and 

behaviour, digestive efficiency, maintenance requirements, and post-absorptive energy and 

nutrient utilization. It has been shown that digestive efficiency has a high potential for 

improvements through genetic selection (Kyriazakis, 2011, Noblet et al., 2013). 

In production farms, feed efficiency in growing animals is generally assessed by its inverse 

trait, the feed conversion ratio (FCR), calculated as daily feed intake divided by daily growth 

rate over a defined time period. Residual feed intake (RFI) is a refinement of this trait and 

captures the efficiency of feed use independent from the production needs, corresponding to 

the net feed efficiency. The RFI can be computed at the phenotypic or genetic levels as the 

difference between observed feed intake and feed intake predicted from production and 

maintenance needs. Divergent selection experiments for RFI have been successful to 

generate lines with low or high RFI and large differences in FCR. Lines of pigs divergently 

selected for RFI could be useful animal models to identify small molecules in biological 

samples, which are indicative for and potentially predictive of animal variation in feed efficiency 

to improve our understanding of feed efficiency and increase genetic progress. 

Measurement of digestive efficiency has traditionally been assessed through nutrient balance 

trials, which are time-consuming and constraining and may only be performed with a small 

number of animals. Finding biomarkers for digestive efficiency would allow screening of 

animals in a herd and would allow for integration of this trait in genetic selection schemes. 

3. Description of the research 

3.1 Metabolomics analyses on plasma and urine samples to 

study nitrogen digestibility, retention and nitrogen efficiency  

Plasma and urine samples from the study “Effect of birth weight of piglets on the nitrogen 

digestibility, retention and nitrogen efficiency later in life” were analysed using a non-targeted 

liquid chromatography-mass spectrometry (LC-MS) based metabolomics approach. The study 

has been described in detail in deliverable D2.4 of the Feed-a-Gene project and had the goal 

to investigate differences in nitrogen metabolism between low and high birth weight pigs later 

in life. In short, the 40 pigs used in this study originated from a three-way cross (i.e., synthetic 

boar x (Large White x Landrace)). At weaning, litters were split based between high and low 

birth weight piglets and housed in separate pens. In a change-over design, pigs were either 

fed a protein-adequate (100% of the requirement) or a protein-restricted (70% of the 

requirement) diet at 2.8 times maintenance (458 kJ ME/kg0.75/d). Plasma samples were 

collected at beginning of the experiment (at 14 weeks of age; d0), and after the first (d17), and 

second (d28) experimental period. Urine samples (spot samples) were collected on d16 and 

d27.  

Analysis of the urine samples from Experiment 1 showed that it was possible to obtain 

separation between animals fed diets with an adequate or restricted protein supply (Figure 1). 
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Figure 1. Partial least squares discriminant analysis (PLS-DA) scores plot of urinary 
metabolites in positive (left panel) and negative (right panel) mode in pigs receiving an 
adequate or restricted dietary protein supply. 

The variance in the composition of urine samples explained by the dietary protein levels was 

only 7.9% and 4.3% in positive and negative mode, respectively. The very low level of 

explanation is an indication that factors other than the dietary protein level are important for 

the variability of the metabolome in urine. 

Based on the corresponding loading plots, metabolites important for the discrimination 

between dietary protein supplies were identified (Table 1). The dietary protein level affected 

the level of metabolites of the tricarboxylic acid (TCA) cycle with α-ketoglutaric acid, a key 

molecule in the TCA cycle, playing a fundamental role in determining the overall rate of this 

important metabolic process, being excreted at a significantly lower level in pigs fed restricted 

dietary protein. Furthermore, excretion of malic acid was reduced (P=0.001) whereas the levels 

of citric acid and aconitic acid contributed to the separation of the dietary protein groups but 

the dietary protein level did not induce differences in the excretion of these metabolites. A 

major group of metabolites affecting the separation dietary protein levels were metabolites 

related to amino acid metabolism and metabolites of microbial origin. 3-hydroxy-3-methyl 

glutaric acid and N-acetylleucine were both excreted at significantly higher levels when feeding 

pigs an adequate dietary protein level, which was also the case for hydroxyphenyl-lactic acid, 

a tyrosine metabolite. A significant number of microbial metabolites (i.e., hippuric acid, 

phenylacetylglycine, and p-cresol glucuronide) contributed to the separation of the dietary 

protein groups as well. However, the excretion of these metabolites did not differ between 

dietary protein levels. Glucuronidated compounds comprised a major part of the discriminating 

metabolites. Glucuronidation is a mammalian chemical detoxification mechanism, that 

increases the solubility and thereby the excretion of metabolites. The majority of the 

glucuronide conjugates were identified at level 3, meaning that the compound class was 

established based on MS/MS spectra characteristics, but it was not possible to identify the 

original metabolite. It was possible to identify two compounds at level 2 (based on spectral 

similarities) as daidzein glucuronide and equol glucuronide. Daidzein is an isoflavone found 

exclusively in soybean and equol is a metabolite of daidzein. The glucuronidated compounds 

were excreted at higher levels when feeding adequate dietary protein.  

In this experiment, it was not possible to obtain separation between urine samples based on 

birth weight group (results not shown). 
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Table 1. List of discriminating metabolites identified in urine from pigs fed adequate and restricted dietary protein levels (Exp. 1).  

Metabolite Polarity RT m/z 
Level of 

identification2 
Adequate1 Restricted1 P-values 

High Low High Low Diet BWC3 Diet x BWC 

Creatinine Pos 0.72 114.066 1 1.00 0.81 0.97 0.95 0.42 0.12 0.21 

Malic acid Neg 0.82 133.014 1 1.00 0.99 0.40 0.48 0.002 0.76 0.73 

α-ketoglutaric acid4 Neg 0.85 145.014 1 1.00 0.51 0.01   

Citric acid Neg 0.89 191.020 1 1.00 0.93 0.84 0.91 0.19 0.99 0.32 

Cis-aconitic Neg 1.12 173.009 2 1.00 0.99 0.91 1.01 0.66 0.60 0.50 

3-hydroxy-3-methyl glutaric 
acid 

Neg 1.36 161.046 1 1.00 0.93 0.65 0.66 0.001 0.74 0.64 

2-Methyl-guanosine Pos 2.01 298.115 2 1.00 0.82 0.95 0.80 0.71 0.08 0.90 

Hippuric acid sulfate Neg 2.39 258.008 2 1.00 1.40 0.82 1.21 0.16 0.004 0.95 

Hydroxyhippuric acid5 Neg 2.64 194.046 2 1.00 0.96 0.96 0.92 0.35 0.35 0.98 

Pyridyl acetylglycine Pos 2.70 195.077 2 1.00 1.10 0.74 0.68 0.002 0.99 0.43 

gamma-Glutamylleucine Pos 2.74 261.145 2 1.00 1.17 0.83 0.84 <.0001 0.13 0.18 

Hydroxyhippuric acid5 Neg 2.89 194.046 2 1.00 1.28 1.36 1.25 0.44 0.68 0.37 

Hydroxyphenyl-lactic acid Neg 2.93 181.051 1 1.00 0.79 0.73 0.75 0.02 0.17 0.09 

2-methylbutyryl-glycine Neg 3.04 158.082 1 1.00 1.10 0.93 1.03 0.41 0.27 1.00 

Riboflavin Pos 3.49 377.146 1 1.00 1.14 1.73 1.77 <.0001 0.56 0.74 

Hippuric acid Neg 3.55 178.051 1 1.00 0.97 1.02 0.98 0.75 0.46 0.91 

Daidzein O-glucuronide4,6 Pos 3.82 431.098 2 1.00 0.87 0.05   

N-acetyl-leucine Neg 3.87 172.098 1 1.00 1.02 0.74 0.82 0.01 0.53 0.67 

Unknown Neg 3.87 307.140 4 1.00 1.10 1.88 0.87 0.32 0.18 0.10 

Glucuronide conjugate Pos 3.88 461.109 3 1.00 0.95 0.81 0.74 0.0004 0.27 0.92 

Phenylacetyl-glycine Neg 3.91 192.067 1 1.00 0.96 1.04 1.01 0.14 0.27 0.78 

Phenylacetylglycine Pos 3.91 194.081 1 1.00 1.05 1.12 1.04 0.13 0.68 0.10 

Sulfate conjugate Neg 3.92 201.113 3 1.00 0.82 0.98 1.08 0.09 0.55 0.05 

Unknown Pos 4.03 251.103 4 1.00 1.13 0.67 0.67 0.004 0.63 0.63 

p-cresol glucuronide Neg 4.05 283.082 2 1.00 1.07 0.08   

Daidzein O-glucuronide6 Pos 4.17 431.098 2 1.00 0.98 0.88 0.81 <.0001 0.16 0.44 

Daidzein O-glucuronide6 Neg 4.18 429.083 2 1.00 0.97 0.84 0.82 0.002 0.55 0.90 

Glucuronide conjugated Pos 4.28 461.109 3 1.00 0.89 0.81 0.71 0.0002 0.03 0.99 

Hydroxy-hippuric acid5 Neg 4.30 194.046 2 1.00 0.91 0.97 1.04 0.42 0.91 0.18 

Equol glucuronide Neg 4.73 417.119 2 1.00 0.92 0.55 0.69 <.0001 0.70 0.12 
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Glucuronide conjugate Neg 4.77 297.098 3 1.00 0.91 0.85 0.77 0.01 0.12 0.88 

4-Oxododecanedioic acid Neg 4.86 243.124 2 1.00 0.96 1.09 1.37 0.001 0.12 0.04 

Azelaic acid Neg 4.89 187.098 1 1.00 0.93 0.93 1.08 0.36 0.36 0.01 

Glucuronide conjugate4 Neg 5.47 387.166 3 1.00 0.89 0.03   

Glucuronide conjugate Neg 5.63 433.208 3 1.00 1.15 1.10 1.24 0.13 0.03 0.96 

Glucuronide conjugate Neg 5.92 415.197 3 1.00 1.24 0.91 1.03 0.05 0.02 0.39 

Glucuronide conjugate Neg 6.19 415.197 3 1.00 0.83 0.68 0.69 0.005 0.33 0.26 
1Peak areas are lsmeans normalised to the area of the peak in the high birth weight group fed an adequate protein diet. 
2 Annotated features were classified on different levels of identification as suggested by Sumner et al. (2007). 
 3BWC: Birth weight category. 
4The statistical model was reduced to only contain diet effect. 
5Three isomeric forms of hydroxyhippuric acid. 
6Two isomeric forms of daidzein glucuronide. 
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Plotting the plasma samples in a simple PCA scores plot showed that there was a clear 

difference between the runs on the LC-MS instrument. The samples were corrected for this 

effect by the van der Kloet method (van der Kloet et al., 2009; results not shown). Further 

analysis of plasma samples from Experiment 1 showed that it was possible to obtain separation 

between animals fed diets with an adequate or restricted protein supply, but not between the 

birth weight classes (Figure 2). 

 

Figure 2. Principle component analyses scores plot of plasma metabolites in positive (left) and 
negative (right) mode in pigs with high or low birth weight (bottom) receiving an adequate or 
restricted dietary protein supply (top). Diet) Green = adequate, Orange = restricted, 
Purple=start. Birthweight) Light blue = high birthweight, Dark blue = low birthweight. The data 
were normalised using the van der Kloet method (van der Kloet et al., 2009). 

However, when using Discriminant Analysis of Principle Components (DAPC) to investigate 

the differences in nitrogen metabolism at the grower-finisher age (i.e., between 98-126 days 

of age), the difference between pigs fed different diets became even more pronounced, 

including a difference between the birth weight groups. Only two metabolites were sufficient to 

separate the pigs fed the adequate and restricted protein diet based on the DAPC in both the 

positive and negative mode. To separate the animals of high or low birth weight, the DAPC 

needed 43 metabolites in the positive mode and 28 in the negative mode. Also, within birth 

weight category, it was possible to separate the animals fed the different diets based on the 

metabolite profile. For the high birth weight pigs, two metabolites were sufficient in both the 

negative and positive mode. For low birth weight pigs, two metabolites were needed in the 

positive mode and 3 in the negative mode to separate the animals based on the diets fed. 

Interestingly, the most important metabolites to separate the pigs based on diet fed were 

different for the animals of both birth weight categories. When comparing the mass information 

of the metabolites to the human metabolome database, the most likely metabolic candidates 
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to discriminate pigs fed a protein adequate or a restricted diet were phenylalaline (both in 

positive and negative mode), tryptophan, and indoleacrylic acid for the high birth weight pigs. 

Phenylalaline and trypophan are essential amino acids, whereas indoleacrylic acid is a 

fragment of trypophan produced by bacterial fermentation. These three metabolites were 

higher in the plasma of pigs fed the restricted protein diet, indicating a possible amino acid 

imbalance. PC(18:2)/LysoPC(18:2), piperidine, phenylalanine, and two unknown metabolites 

were the most likely candidates to separate the two diets for the low birth weight pigs. 

Piperidine, a fermentation product of colonic protein, and phenylalanine were highest in the 

plasma of pigs fed the restricted protein diet, again indicating a possible amino acid imbalance. 

The level of PC(18:2)/LysoPC(18:2) in the plasma samples did not differ between the animals 

fed the two different diets even though it was the most important metabolite to discriminate the 

low birth weight pigs fed the two different diets.  

A second experiment was performed where both birth weight and genetic capacity to deposit 

protein was taken into consideration when grouping the animals, otherwise the experimental 

design was identical to the design of the first experiment. Plasma and urine samples from this 

experiment were also subjected to non-targeted LC-MS based metabolomics analysis.  

Analysis of the urine samples from Experiment 2 showed that it was possible to obtain 

separation between the dietary protein regimes (i.e., adequate and restricted dietary protein 

supply) and between the breeding value for protein deposition level (high vs. low) (Figure 4). 

  
Figure 4. Partial least squares discriminant analysis (PLS-DA) scores plot of urinary 
metabolites in positive mode. Left panel: separation according to dietary protein level; Right 
panel: separation according to breeding value for protein deposition. 

The separation according to dietary protein supply is both along PC1 and PC2 and the variance 

added up to 50.5%. In comparison, the separation according to breeding value for protein 

deposition was only explained by PC2, which accounted for 7.2% of the variance. The 

corresponding regression coefficients plots are shown in Figure 5 and 6, respectively.  
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Figure 5. Regression coefficients plot for the comparison of the supply of dietary protein 

(adequate and restricted). 

 
Figure 6. Regression coefficients plot for the comparison of the breeding value for protein 
deposition levels (high and low). 

The tentative identification of metabolites responsible for the discrimination of dietary protein 

level in experiment 2 showed that the majority of the metabolites were similar to those found 

in experiment 1. In the group fed adequate dietary protein urea was the metabolite with the 

highest regression coefficient and metabolites of microbial origin, phenylacetylglycine and 

hydroxyphenylacetylglycine, had high regression coefficients as well.  

The regression coefficients plot for the breeding value for protein deposition showed that two 

metabolites in each group were the main contributors to the separation of the groups. In the 

group of the low breeding value for protein deposition, an unknown metabolite (RT 3.00, m/z 

160.0970) had the highest regression coefficient. Cinnamoylglycine, representing the second 

and third highest regression coefficients, is a product of gut bacteria metabolizing 

phenylalanine. Piperidine and creatinine are the metabolites mainly associated with the high 

breeding value for protein deposition group. Piperidine is a small molecule resulting from the 

fermentation by colonic bacteria of non-digestible peptides and protein. Creatinine is directly 

associated with energy metabolism through the creatine-phosphocreaine shuttle system and 

creatinine being a discriminating molecule suggests pigs in the high breeding value for protein 

deposition group to have a higher energy metabolism. 
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Analysing the untargeted LC-MS metabolomics data of the plasma samples with PLS-DA 

showed that it was possible to discriminate the plasma samples in negative mode both 

regarding to breeding value for protein deposition category and dietary protein level (Figure 7). 

 
Figure 7. PLS-DA scores plots of plasma metabolites measured in negative mode. Left panel: 
separation according to dietary protein level; Right panel: separation according to breeding 
value for protein deposition. 

The separation according to dietary protein level is both along PC1 and PC2 and the variance 

adds up to 28.1%. In comparison, the separation according to breeding value for protein 

deposition along PC1 and PC2 only accounts for 10.7% of the variance. The level of explained 

variance is low for both categories and the analysis of the data will be continued to obtain 

better models to explain the variance and select the metabolites important for the separation.  

In positive mode, it was not possible to obtain properly validated PLS-DA scores plots and the 

work on this part will be continued.  

3.2 Metabolomics analysis of plasma from pigs divergently 

selected for cortisol level or feed efficiency 

Plasma samples from the study “Responses of pigs divergently selected for cortisol level or 

feed efficiency to a challenge diet during growth” performed at INRA in Task 5.1 (see 

deliverable D5.2 for details) were subjected to non-targeted LC-MS analysis. The plasma 

samples were collected at 15 and 23 weeks of age, and lines were selected for either divergent 

residual feed intake (RFI) or divergent plasma cortisol one hour after an ACTH injection.  

The plasma samples (361 in total) were analysed in six batches and the first exploratory PCA 

plot of the samples showed a clear batch effect. This was corrected for by the van der Kloet 

method (results not shown). Exploratory PCA plots of the corrected dataset showed no 

grouping according to feed (i.e., control, cereal-based diet versus challenge, high fibre, low 

energy and low digestible amino acid diet), line (i.e., high RFI (G9+FG), low RFI (G9-FG), high 

cortisol (G2+FG), low cortisol (G2-FG)), or sampling week (15 or 23). The use of DAPC and 

PLS-DA showed that it was possible to obtain separation based on the genetic lines. The PLS-

DA scores plot is shown in Figure 8, and the metabolites responsible for the separation in the 

models are shown in Table 2 and 3. 
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Figure 8. PLS-DA scores plot of plasma metabolites from the genetic lines G9+FG and G9-FG 
measured in negative mode.  

Table 2. The peak area of the peaks discriminating the four genetic lines when analysing data 
using discriminant analysis of principal components. 

Peak1 
Genetic lines 

P-value 
G2-FG G2+FG G9-FG G9+FG 

4.74/226.018 420973 317422 223380 171887 <0.001 

6.71/448.307 93067 102057 134637 171543 <0.001 

0.72/215.033 816965 820429 846333 789546 0.001 

3.26/198.033 1236133 1251571 1303988 1301261 <0.001 

9.65/540.331 569557 600114 558407 496493 0.025 

1.30/267.073 68629 60472 57078 41360 0.019 

6.31/464.302 22802 24272 40942 76465 <0.001 

3.65/212.002 209280 191942 161597 127065 <0.001 

3.64/129.056 587402 548657 570505 530796 0.366 

10.96/568.362 309720 297223 262081 267794 0.019 

2.85/203.083 462044 437276 447713 355748 <0.001 

1.16/180.067 308614 287804 271443 261653 0.001 

4.25/187.007 260029 237703 150973 196074 0.001 

9.24/564.331 406475 408898 399079 353756 0.108 

0.71/92.928 876215 870982 880778 861762 0.553 

3.28/129.056 278830 259316 276176 265251 0.405 

0.71/268.801 260992 258929 262488 260394 0.957 

6.66/465.305 3155753 3166220 3194250 3205678 0.075 

7.28/453.286 73005 104782 122720 303518 <0.001 

3.57/178.051 724943 647597 783216 678259 0.004 

0.72/217.030 276866 277272 286364 266597 <0.001 

6.71/449.310 25447 25373 32858 43263 <0.001 

6.17/209.082 177982 148292 140061 207963 0.006 

3.26/200.030 406380 411673 432423 429259 <0.001 

0.71/94.925 607456 605987 613137 600419 0.628 

2.71/117.056 66768 61499 81160 75124 0.005 
1The peak is given as retention time/mz-value. 
Metabolites marked in bold are common between Table 2 and Table 3. 
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Table 3. Regression coefficients of peaks in negative mode responsible for the separation 
between the genetic lines G9+FG and G9-FG. 

Peak1 
Scaled regression coefficients 

Metabolite suggestions2 
PC#1 PC#2 

7.28/453.286 -0.0001 -0.0002 Glycerophosphocholine 

7.82/437.291 -7.15E-05 -0.00016 No suggestions 

6.17/209.082 -6.22E-05 -0.00019 Many suggestions 

4.76/225.077 -5.81E-05 -0.00019 Many suggestions 

6.71/448.307 -4.11E-05 -0.00011 Bile salt 

4.25/187.007 -2.58E-05 -0.00021 p-Cresol sulfate 

0.63/316.948 -2.00E-05 -1.55E-05  

5.49/264.088 -1.57E-05 -4.98E-05  

6.66/465.305 -1.41E-05 8.12E-05 Internal standard 

1.05/128.035 -2.79E-06 -2.28E-05 A pyrroline 

2.10/164.072 2.75E-06 -8.22E-05 Phenylalanine 

10.96/568.362 8.52E-06 -9.49E-05 "Fat-like" 

0.57/174.956 9.82E-06 4.59E-05  

3.26/198.033 1.21E-05 4.87E-05 Internal standard 

9.79/265.148 1.59E-05 4.79E-05  

3.28/129.056 1.85E-05 -6.08E-05 Ketoleucine 

10.88/309.174 1.96E-05 5.63E-05  

0.75/160.842 1.97E-05 6.72E-05  

0.72/146.046 3.82E-05 0.000134 Glutamate 

3.64/129.056 4.79E-05 -5.02E-05 Ketoleucine 

3.65/212.002 5.18E-05 3.43E-05 Indoxylsulfuric acid 

9.27/588.330 7.25E-05 0.000154 "Fat-like" 

4.74/226.018 7.42E-05 0.000106 No suggestions 

3.94/192.067 7.42E-05 8.93E-05 Phenylacetylglycine 

0.72/215.033 8.07E-05 0.000194 Many suggestions 

10.00/566.346 8.33E-05 0.000145 Glycerophosphoserine 

4.09/283.082 9.27E-05 0.000148 p-Cresol glucoronide 

3.57/178.051 9.80E-05 0.000167 Hippuric acid 

2.85/203.083 0.000106 0.000213 Tryptophan 

0.99/89.024 0.00011 2.94E-05 Lactic acid 
1The peak is given as retentiontime/mz-value. 
2These are suggestions after search in databases. They need to be confirmed with MSMS and standards (when 
possible). 
Metabolites marked in bold are common between Table 2 and Table 3. 

Based on the results obtained using two different analytical approaches and the complexity of 
the experimental design, it was decided to involve a student in the analysis of the dataset. A 
student has been enrolled for these analyses, which will be performed during the first semester 
of 2019. 
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3.3 Metabolomic analysis of plasma from pigs with extreme feed 

efficiencies – Topigs Norsvin 

To investigate further the use of metabolomics to find biomarkers for feed efficiency, 239 male 

pigs originating from a three-way cross (i.e., Synthetic boar x (Large White x Landrace)) and 

housed in pens equipped with individual feed intake registration stations were studied. The 

pigs were fed ad libitum according to a three-phase feeding program, in which all diets were 

commercial diets based on wheat, barley, and by-products, as typically fed in Europe. For the 

evaluation of the effect of metabolites on feed efficiency, the 40 pigs with the highest and the 

40 pigs with the lowest individual feed efficiency (estimated from FCR) were used. Plasma 

samples were collected at the day before slaughter. Plasma metabolites were characterised 

by untargeted liquid chromatography–mass spectrometry (LC-MS), and results were subjected 

to a discriminant approach combined with principal component analysis to discriminate pigs 

based on feed efficiency extremes. 

In the first measure of differences between the groups (i.e., by a principle component analysis), 

the high and low feed efficiency pigs did not seem to differ in their metabolite profiles (Figure 

9). However, when using a more directed approach (DAPC), there was a clear difference 

between the high and low feed efficient pigs when measuring the metabolites in negative mode 

(Figure 10). In total, 16 metabolites were necessary to discriminate the groups. When 

comparing the mass information of the metabolites to the human metabolome database, the 

most likely metabolic candidates were, amongst others, L-leucine, phenol sulphate, L- or D-

tryptophan, and p-cresol. There was also a difference measurable in the positive mode (Figure 

10). Four metabolites were needed for discriminating the high feed efficiency pigs, with the 

most likely candidates being 2-piperidinone, tetracosahexaenoic acid, L-valine, and an 

unknown metabolite. The concentration of metabolites related to protein metabolism, amino 

acids L-leucine, L- or D-tryptophan, and L-valine, and the bacterial end product of protein 

fermentation (p-cresol) were all higher in the plasma of high feed efficiency pigs. This might 

indicate that the high feed efficiency pigs were fed a diet that did not fulfil their protein 

requirement. 

Figure 9. Principle component analyses scores plot of plasma metabolites in positive (left) 
and negative (right) mode testing differences between feed efficiency extremes in grower-
finisher pigs. Yellow=high feed efficiency, Green=low feed efficiency. 
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Figure 10. Gaussian kernel density plot of metabolites in positive (left) and negative (right) 
mode testing differences between feed efficiency extremes in grower-finisher pigs using 
discriminant analysis of principle components. Yellow=high feed efficiency, Green=low feed 
efficiency. 

3.4 Molecular indicators of feed efficiency as proposed by a 

meta-analysis of transcriptomics data in tissues and fluids 

Small molecules in biological samples, which can potentially predict animal variation in feed 

efficiency, were identified using different biological samples, analytical methodologies, and 

statistical approaches. The principle of 3R (refinement, reduction and replacement) was 

followed because the applied strategies involved not only pigs and biological samples newly 

collected in the Feed-a-Gene project, but also data available in open international repositories 

that were reanalysed with new computational strategies (machine learning) to identify 

important predictors of feed efficiency traits. 

To identify molecular predictors of feed efficiency traits such as RFI (net efficiency), gain-to-

feed ratio (FCR, overall feed efficiency), and gain-to-energy ratio (FCRe, energy efficiency), 

large sets of transcriptomics data were used that were acquired in muscle, one of the main 

tissues affected by differences in feed efficiency. The expression levels of 22,400 annotated 

molecular probes in loin muscles collected at slaughter were available (GEO subseries 

accession numbers GSE47769 and GSE84092) on 71 purebred Large White pigs divergently 

selected for RFI. Across experiments, muscles were sampled in both barrows (n=48) and 

females (n=23) weighing between 80 and 115 kg body weight. The pigs had free access to 

pelleted diets of standard composition (n=39) or to diets rich in fibre (n=24). A subset of pigs 

(n=8) were also feed-restricted (~10% below ad libitum intake) during the growing-finishing 

period. In the merged dataset, pigs were classified into low or high RFI categories according 

to their lines of origin (n=40 for the high RFI line and n=31 for the low RFI line). The genetic 

RFI values of these pigs were estimated by considering performance of their littermates in the 

selection farm. The FCR was calculated from individually measured daily feed intake and 

average daily gain during the test periods. Net energy-based FCRe was obtained by dividing 

the daily net energy feed intake by the average daily gain during these periods. The merged 

molecular data set included 20,405 annotated molecular probes that were expressed in 

muscle. Molecular data were normalised by mean centering (i.e., subtracting the mean value 

across all probes from all raw values for each sample) to obtain consolidated expression 

values. Machine learning procedures were applied on molecular probes for categorical (RFI 

group) and continuous (RFI value, FCR, and FCRe) traits. The random forest and Gradient 

TreeNet Boosting machine-learning procedures were used to propose the most important 
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molecular predictors of these traits. A good prediction (90.5% of success) of RFI categories 

was obtained by the random forest procedure with 30 molecular probes (out of the 22,406 

probes) selected as very important variables to classify the pigs (Table 4).  

Table 4. Classification of pigs between low or high RFI groups based on expressing genes 
studied in pig muscle (categorical values). 

Actual class Total class Percent correct 
Predicted categories 

High RFI Low RFI 

High RFI 13 84.6% 11 2 

Low RFI 8 100.0% 0 8 

Total 21    

Average  92.3%   

Overall %Correct  90.5%   

The random forest procedure was applied on a microarray dataset (20,405 expressed 

annotated probes) in the longissimus muscle of 71 pigs divergently selected for RFI, with the 

aim to predict the separate pigs between low or high RFI classes. A randomly selected 

bootstrap sample (n = 50 pigs) was used for learning, whereas the remaining sample (n = 21 

pigs) was used for validation. The best model (90.5% of good results) was obtained with 30 

molecular probes declared as very important in prediction. Good prediction was obtained for 

84.6% of the pigs of the high RFI line and 100% of the pigs of the low RFI line, respectively. 

These probes corresponded to 20 unique genes, including PDZD2, MUM1, CD40, HLA-A, 

ST8SIA2, SERPINA1, and HBXIP. Good prediction was obtained for 100% for pigs of the low 

RFI line and 84.6% of the situations for pigs of the high RFI line, respectively. For continuous 

traits, the Gradient TreeNet Boosting procedure provided powerful models for the prediction of 

RFI, FCR, and FCRe. About 50 molecular probes corresponding to 27 unique genes can be 

considered as the most important predictors for RFI (R²=0.63, RMSE=42.91). About 88 probes 

corresponding to 52 unique genes were proposed to predict FCR (R²= 0.70; RMSE=0.22), and 

when comparing with the mean FCR in the evaluated pigs, the error of prediction was 8% of 

the trait. However, the prediction model was again clearly better for low than for high RFI lines 

(low RFI line: R²=0.71; RMSEP=0.09; high RFI line: R²=0.51; RMSEP=0.15). For FCRe, 

iterative steps led to propose seven probes corresponding to six identified genes as the most 

important predictors, but the accuracy of the model was lower (R²=0.52; RMSE=0.002) as 

compared with the other analysed traits (Table 5).  
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Table 5. Number of molecular probes and unique genes identified as the most important 
predictors for feed efficiency traits (continuous values). 
 Number of probes Number of genes R2 RMSE 

RFI 

384 222 0.63 42.91 

280 161 0.64 39.6 

50 27 0.65 39.35 

FCR 

421 267 0.61 0.23 

88 52 0.70 0.22 

50 33 0.67 0.22 

FCRe 

318 218 0.49 0.002 

50 29 0.52 0.002 

7 6 0.52 0.002 
RFI: residual feed intake; FCR: feed conversion ratio; FCRe: gain-to-energy intake. 

Machine learning procedures were applied on a microarray dataset (20,405 expressed 

annotated probes) in longissimus muscle of 71 pigs with the aim to predict RFI, FCR, and 

FCRe values. A randomly selected bootstrap sample (n = 50 pigs) was used for learning, 

whereas the remaining (n = 21 pigs) was used for test validation. The best models were 

obtained with Boostrap procedures to select molecular probes as variables important in 

prediction. Iterative steps led to model reduction to identify a subset of very important 

predictors with increased accuracy of the prediction, evaluated by the root mean square error 

(RMSE) and the coefficient of determination (R2).  

Overall, linear combinations of 24 genes chosen among the different lists of very important 

predictors and for which expression levels in muscle were further studied by qPCR 

methodology (i.e., a cheaper and quicker method than microarrays) were significantly related 

to inter-individual variations in RFI (R²=0.58), FCR (R²=0.72) and FCRe (R²=0.71). Top genes 

(Table 6) included FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and 

FRAS1, which are known to participate in a variety of biological processes (e.g., immunity, 

energy metabolism, cell growth, and signal transduction). In addition, FKBP5, SERINC3, IGF2, 

CSRNP3, EZR, and RPL16 were more intrinsically related to RFI. 
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Table 6. Most important genes involved in linear prediction of feed efficiency traits when 
studied by qPCR in loin muscle collected at the slaughterhouse. 

RFI value FCR FCRe 

Gene name P-value Gene name P-value Gene name P-value 

FKBP5 <0.001 FKBP5 <0.001 FKBP5 <0.001 

SERINC3 0.02 MUM1 0.03 MUM1 0.04 

IGF2 0.03 AKAP12 0.03 AKAP12 0.03 

CSRNP3 0.03 FYN 0.03 PHKB 0.08 

EZR 0.09 TMED3 0.08 SOCS6 0.07 

RPL16 0.08 PHKB 0.08 FYN 0.08 

  TGF 0.02 TGF 0.02 

  SOCS6 0.07 TMED3 0.09 

  ILR4 0.10 ILR4 0.10 

  FRAS1 0.12 FRAS1 0.12 

R² = 0.58  R² = 0.72  R² = 0.71  
RFI: residual feed intake; FCR: feed conversion ratio; FCRe: gain-to-energy intake. 
A stepwise selection was used to retain the most significant variables in the regression model for feed efficiency 

traits. 

Although working on muscle at the slaughterhouse may currently not be considered cost-

effective, the results demonstrate that the applied methodological approaches are powerful to 

identify reliable predictors of feed efficiency traits. Similar approaches in fluids allowing early 

sampling in living animals have been considered. In blood, we again took advantage of two 

experiments for which transcriptomics datasets were available on low and high RFI pigs 

(Campos et al., 2014, Le Floc'h et al., 2016; n=36 pigs). We also performed a transcriptomics 

analysis in blood aliquots from a newly conducted experiment based on the same RFI lines 

but including pigs of a later generation of selection (n=79 pigs). In these three experiments, 

gene expression levels were monitored in tissue samples obtained at an early age (i.e., post-

weaning and at the start of the growing period). It was assumed that it would be possible to 

predict FCR from early obtained transcriptomics data for the subsequent growing-finishing 

period. A machine-learning procedure was applied on the two first datasets and the selected 

molecular probes were validated on the last experiment dataset. About 154 molecular probes 

were identified by the Gradient TreeNet Boosting procedure as very important predictors to 

classify pigs as low or high RFI groups, and iterative steps can reduce the number of probes 

to the top 10 most important predictors with excellent performance (97.5% of success). The 

genes are known to participate to immunity, homeostatic processes, oxidation-reduction 

reactions, proteolysis, and response to hormone stimuli. For continuous values such as FCR, 

766 molecular probes were first selected, and iterative steps reduced the number of molecular 

probes to 10 most important predictors (Table 7) with excellent performance (R²=0.82, 

RMSE=0.195, error of prediction ~8%). 
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Table 7. Most important 10 expressing genes in blood sampled at early stage and able to 
predict FCR in next growing periods. 

Gene name Score in predictive model 

Serine palmitoyltransferase, small subunit A 100.00 

Vacuolar protein sorting 26, transcript Variant 1  83.91 

Rho GTPase activating protein 22 80.78 

PRP40 pre-mRNA processing factor 40 homolog A Selectin L 78.65 

Selectin L 76.43 

RNA guanylyltransferase and 5'-phosphatase 75.62 

WASH complex subunit FAM21-like  73.90 

DDB1 and CUL4 associated factor 6 73.55 

Similar to centrosomal protein 290kDa 71.38 

Eukaryotic translation initiation factor 2B, subunit 1 alpha, 26kDa 71.10 

R² 0.58 
 

4. Conclusions 

Studies on the urinary and plasma metabolome of high and low birth weight pigs showed that 

it was possible to obtain grouping according to dietary protein level in both the urinary and the 

plasma metabolome, whereas it was only possible to obtain separation between birth weight 

categories in the plasma metabolome. The urinary metabolites responsible for the separation 

according to dietary protein level belonged to the TCA-cycle and were amino acids and 

metabolites of microbial origin, likely absorbed from the gut. Furthermore, a number of 

glucuronidated metabolites were excreted when feeding adequate dietary protein. These were 

probably mainly xenobiotics. Using DAPC, it was possible to discriminate both birth weight 

categories and dietary protein levels in the plasma samples. Discriminating the birth weight 

categories required many metabolites (43 and 28 metabolites in positive and negative mode, 

respectively). However, when considering dietary protein supply level within a birth weight 

category, only two or three metabolites were required for separation of treatment groups. In 

the second experiment, where the breeding value for protein deposition was taken into 

consideration, it was possible to discriminate the groups based on breeding value for protein 

deposition and on dietary protein level in the urine and the plasma metabolome. Metabolites 

causing separation according to dietary protein level were similar to those identified in the first 

experiment. In plasma, cinnamoylglycine and an unknown metabolite were associated with a 

low breeding value for protein deposition. Piperidine and creatinine were associated with a 

high breeding value for protein deposition. Piperidine, a small metabolite of microbial origin, 

was associated with the discrimination of diets in the low birth weight piglet in the first 

experiment whereas it characterised a high breeding value for protein deposition piglets in the 

second experiment. The possible discrepancy between these findings needs to be investigated 

further. The results of experiment 1 and 2 showed that the breeding value for protein deposition 

gave a better separation of the metabolomes than using birth weight categories, which will 

make the selection of metabolites more reliable and thereby increase the probability of finding 

valid biomarkers. 

Studying the plasma metabolome of pigs selected for cortisol level or feed efficiency showed 

that it was possible to obtain separation in the plasma metabolome according to feed efficiency 

line. Several metabolites, which differ between more and less efficient lines, were tentatively 

identified.  
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Applying the metabolomics approach to a larger population of pigs (239 animals) showed that 

it was possible to obtain separation between plasma metabolites based in information on feed 

efficiency when plasma from the 40 most efficient and the 40 least efficient pigs was analysed. 

Tentatively identified metabolites responsible for the discrimination were amino acids and 

microbial metabolites. 

Overall, the metabolomics studies have shown that it is possible to identify metabolites 

associated with overall feed efficiency. The validation of these as predictive biomarkers of feed 

efficiency is in progress in Task 2.5 and will be continued during the coming months. 

The assumption that it is possible to find important expressing genes in tissues and fluids that 

are able to predict feed efficiency traits was validated, and the variety of biological functions 

represented by the genes included in predictive models confirmed the integrative and complex 

nature of feed efficiency in growing pigs. The lists of biomarkers will be transferred to WP5 as 

possible traits to be included in next selection procedures. 
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5. Annexes 

Presentations of results: 
Verschuren L.M.G., Jansman A.J.M., Calus M.P.L., Bergsma R., Hedemann M.S. (2018). 

Plasma metabolites related to nitrogen efficiency in low and high birth weight pigs. 14th 
International Symposium Digestive Physiology in Pigs, August 21-24, 2018, Brisbane, 
Australia. 

Gondret F., Koffi B., van Milgen J., Louveau I. (2017). Molecular indicators of feed efficiency 
as proposed by a meta-analysis of transcriptomics data. In: Book of Abstracts of the 68th 
Annual Meeting of the European Federation of Animal Science, p. 239. August 28 - 
September 1, 2017. Tallinn, Estonia. Wageningen Academic Publishers. 

Messad F., Louveau I., Renaudeau D., Gondret F. (2018). Variability of feed efficiency in 
growing pigs: towards predictive biomarkers. Feed-a-Gene plenary meeting, Newcastle, 
2018.  
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